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Abstract. In a large-scale software development product development
organization, we found that most developers, although experienced, were
lacking architectural knowledge of the specific developed product.
As a remedy, we evaluated whether we could stimulate learning the prod-
uct architecture by conducting training in how to use the product’s dis-
tributed tracing platform, built on the OpenTelemetry standard and the
open-source Jaeger Tracing visualization tool.
We planned and participated in a training event, where parts of the or-
ganization explored, using experiential learning, how to set up and use
tracing to troubleshoot a realistic fault scenario we prepared. Respon-
dents were asked to rate the tool according to the Technology Adoption
Model (TAM), and responses were collected on Likert-type scales, ana-
lyzed, and summarized using a Bayesian workflow.
Even as tool usage post-training was low, respondents still had a posi-
tive attitude toward using the tool, valued the experiential training, and
expressed a strong intent to use the tool for program comprehension.

Keywords: Micro-services · Observability · Distributed tracing · Expe-
riential learning.

1 Introduction

Even with comprehensive design documentation, becoming fluent in a codebase
with millions of lines is difficult. Feature location involves static (source-code-
based) and dynamic (logging, tracing) methods [3], but trace-based call-flow
visualizations require setup and usage skills. With the advent of distributed mi-
croservices, where one request passes through multiple services before returning,
the problem of locating features is even more complex, and distributed tracing
tools have emerged to facilitate program comprehension and fault localization [2].

Over six months, we conducted a three-cycle action research study in a large-
scale software development organization, encompassing around 100 developers
(15 teams) on multiple sites in two time zones (Europe and India). As the ma-
jority of developers were relatively new to the large code base (more than 12
MLOC Java code), dating back 15 years, we wanted to understand if a dis-
tributed tracing tool could be used to help developers understand the program
flow. To test this theory, we planned and executed a learning session in which 19
developers, on two sites, learned how to set up and use the Jaeger tracing tool
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in a realistic problem scenario. Throughout the study, we collected feedback via
surveys from the whole organization on how they perceived their competence
and their experience with the training.

This paper is structured as follows: This section contains the overall prob-
lem formulation and the research questions. Section 2 contains background and
related work, while Section 3 includes the research design, studied context, and
methodology. Section 4 presents the results of our action cycles, which are con-
densed into learnings in Section 5, before we end the paper in Section 6 with
conclusions.

1.1 Problem Statement and Research Questions

In our studied case, even as the product had supported tracing for over six
months, few developers used it to learn about the product, which leads us to our
problem formulation:

Can we use a tracing tool, like Jaeger, to increase architectural knowledge of
a large product in a development organization where most developers lack specific
product experience?

To investigate this problem, we formulated the following research questions:

(RQ1): To what extent do developers perceive that tracing tools help them
understand the system architecture of a large-scale, multi-service system,
most of which has been written by other developers?

(RQ2): How do developers perceive learning Jaeger tracing via experiential
learning, using the system where they usually work?

(RQ3): To what extent do developers intend to continue using the tracing tools?

2 Background and Related Work

The Open-Source standard and framework OpenTelemetry1 was formed to en-
able practical observability of microservices in an easy, universal, vendor-neutral,
loosely coupled, and built-in way. To meet these goals, it provides standards and
reference implementations that generate, collect, and export telemetry data in
traces, metrics, and logs. Jaeger Tracing2 is an open-source tool that produces
web visualizations of collected OpenTelemetry data.

Gortney et al. [5] conducted a systematic mapping study and found that dy-
namic tracing, log analysis, and metrics collection were the three main practices
used to visualize microservice architectures.

To assess the state of observability tools in industry, Li et al. [7] conducted
an interview study, where 25 interviewees from ten companies of different sizes
and in five domains were interviewed about their tracing practices and tools. All
but the smallest of the studied companies (≈ 10 services and ≈ 20 kLOC) were
employing, or considering using, some trace and log processing pipeline. The
trace function was most commonly used for timeline and root cause analyses.
1 https://opentelemetry.io/
2 https://www.jaegertracing.io/
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3 Research Design

3.1 Context

The organization consists of 15 cross-functional teams of 6−8 developers, equally
split between Europe and India. The product runs on Kubernetes in the cloud,
and includes both in-house and externally sourced services, mostly Java (3.01
MLOC production, 2.22 MLOC unit tests, 6.49 MLOC functional tests), plus
smaller Vue.JS (181 kLOC) and TypeScript (817 kLOC) front ends.

Half of the 15-year-old code base is older than five years, and only 30% is writ-
ten by current employees, with the most experienced team contributing 8.8%,
and average team contributions under 1%. A survey (55% response rate) shows
both European and Indian developers average over ten years in general software
development experience, but those in Europe have more product knowledge (av-
erage 4.2, max 15 years) than those in India (average 2.5, max 4 years).

3.2 Summary of Research Cycles

The organization asked us to investigate why OpenTelemetry and Jaeger were
not used, even though architects saw them as valuable for exploring product
architecture and unfamiliar features.
Cycle 1: Problem identification and formulation assessed the organiza-
tion’s development practices by collecting system statistics and administering a
survey3, asking respondents to rate their skills in six development areas, using a
0− 100 scale with descriptive anchors for five levels.
Cycle 2: Planning and executing the training session involved devel-
oping and delivering Jaeger training simultaneously at the European and In-
dian development centers. The session was one of six optional tracks during
an organization-wide training day, with instructor-led, in-office participation to
promote skill sharing and cross-team networking, while organizers allocated at-
tendees based on budget and preferences.
Cycle 3: Follow-up of the training examined whether developers used Jaeger
after the training by monitoring internal wiki page views. After one month, a
follow-up survey was distributed to gather feedback on the training experience.

3.3 Data Collection and Analysis Methods

All our surveys used 7-level symmetric Likert scales with mandatory items and
optional qualitative questions to assess agreement with survey statements. We
applied Bayesian data analysis [4, 8] under the TAM framework to model con-
structs like usability, ease-of-use, and intent-to-use, comparing our treatment
group to two control groups from unrelated training sessions. Models were ranked
using PSIS-LOO [11] and built with the brms framework [1], interfacing with the
Stan language, with full methodology available in the replication package [10].

3 Available in the replication package: https://doi.org/10.5281/zenodo.15678405

https://doi.org/10.5281/zenodo.15678405
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We compared training sessions and sites by analyzing distributions, means,
and credible intervals of the expected rating (defined as E ≡

∑7
k=1 p(k) × k,

where p(k) is the probability of rating k) for the different constructs. We also
summarized the qualitative feedback and presented this to the organization.

4 Results and interpretation

We follow recommendations from Staron [9] and report the results per cycle.

Cycle 1: Problem identification and formulation focused on assessing the
current situation, from a tracing and observability perspective. We administered
a survey to assess the self-rated competence level in the organization from various
development perspectives. While the majority of the 55 respondents, in both
Europe and India, are confident in writing and debugging Java code, fewer were
confident in Vue.JS, and only four individuals (all based in Europe) reported
that they were confident in Jaeger tracing.

We presented these findings, together with the proposed training, to the
organization, which agreed to continue the study.

Cycle 2: Planning and executing the training session started with col-
lecting background knowledge and planning an interactive training session. We
wanted to involve participants and use a realistic scenario recognizable to devel-
opers. The cycle lasted six weeks, with regular follow-up meetings, comprising
four phases: (i) planning and scoping the tutorial, (ii) preparing the setup in-
structions and developing the scenarios the students would face, (iii) validating
the instructions (also including fixing issues found in existing documentation),
and finally (iv) executing the training sessions, and collecting direct feedback.

Our planning phase focused on how to introduce a condition that would
trigger a suitable anomaly (e.g., prolonged response time). We developed one
mandatory “seeded” problem and four “overflow” tasks, freely chosen by each
team. To aid teams, we developed four hints for our problem, where the first hint
indicated the product area, and the last one pointed to a complete functional
test case reproducing the problem. Depending on the team’s problem-solving
progress, teachers distributed hints as text on printed paper. All teams needed
the first hint, and one team used all four.

After one experienced developer formulated and implemented the seeded
problem, including hints, we used two validation phases. First, one developer
on each site independently followed and commented on the instructions. After
adjustments and clarifications of instructions and hints, one junior developer
performed final validation, including measuring the required time.

The training day comprised five one-day training sessions, from requirements
engineering to security analysis. Participants ranked their preferences, and orga-
nizers allocated spots based on these choices and available capacity. All partici-
pants in the Generative AI and Vue.JS tracks had chosen these as their primary
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alternative. All architect and developer teams were represented in the Jaeger
tracing track, but only 70% had ranked it as their primary choice.

After the training day, we collected opinions on the training from participants
on both sites via a prepared survey. The tool-centric training sessions shared the
same TAM-based structure of the questions, but had different characteristics:

Generative AI Participants in this track would learn principles behind Retrieval-
Augmented Generation (RAG), use and partially develop a Python-based
RAG solution in an existing Jupyter Notebook. Developers currently use
none of these tools in their daily work.

Jaeger tracing This is our treatment group, where we explain how to set up
OpenTelemetry and Jaeger in an experiential learning setting, and use these
tools to solve a realistic, prepared problem in a special product branch.

Vue.JS Participants in this track would learn how to leverage the (for the prod-
uct) new Vue.JS component pattern4. They were expected to learn the pat-
tern and refactor existing views by developing and using common compo-
nents in their normal development environment.

We asked the participants to rate the tools they used in their training from the
angles of: (i) usability, (ii) ease-of-use, (iii) ease-of-access, and (iv) intent to use
the tool in the future. Overall, the ratings were positive and similar for both
sites, indicating that the training was well received.

Table 1. Respondents per training session, their reported years of professional expe-
rience, and the percentage of participants responding to the survey.

Years of prof. experience Response
Site N Mean σ Median Min Max Rate

GenAI Europe 3 14.0 14.2 9 3 30 50%
India 6 13.7 3.6 13 10 20 75%

Jaeger Europe 10 17.5 8.7 17.5 8 30 83%
India 9 12.9 3.4 14 5 17 100%

Vue.JS Europe 5 14.8 10.2 19 0 25 83%
India 5 7.8 4.0 10 3 12 71%

Table 1 shows the number of respondents per session and site, and summary
statistics on their (self-reported) professional developer experience. All sessions
involved experienced professional developers, with a median experience ranging
between 9 and 19 years. The response rate varied between 50% and 100%.

Figure 1a) shows the expected average usability rating, distribution, point
estimate, and 95% credible interval. The figure shows that Vue.JS participants
perceived the strongest usability, especially the Indian cohort. However, the Eu-
ropean participants are Quite Likely to agree that Vue.JS components are usable.

4 https://vueschool.io/articles/vuejs-tutorials/5-component-design-patterns-to-
boost-your-vue-js-applications/
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Fig. 1. The distributions, by tool and training site, of the posterior expected rating
for the four constructs: usability, ease-of-use, ease-of-access, and intent-to-use. Likert
levels on the x-axis represent Extremely Likely, Quite Likely, Slightly Likely, Neutral,
and Slightly Unlikely agreement, omitting the last two levels. The point estimate of the
expected rating is shown as a dot, surrounded by the 95% credible interval. Sample
(response) means are shown as dashed lines.
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Both cohorts of Generative AI participants agree that the RAG tool is Slightly
Likely to be usable, though the European cohort also tends towards Neutral.
The Jaeger participants take the middle ground, rating the tool between Quite
Likely and Slightly Likely to agree on its usability. The Indian cohort leans more
towards Slightly Likely, though the difference is negligible.

Concerning ease-of-use, Figure 1b) show that the Vue.JS participants are
more skeptical, particularly the European cohort, which rates ease-of-use Slightly
Likely, while the Indian cohort leans more towards Quite Likely. Both the other
tracks are very similar between sites. However, the Jaeger distribution is slightly
narrower, and estimates, with 95% probability, that the expected value for ease-
of-use lies between Slightly Likely and Quite Likely. Although the point estimate
of the Generative AI track is similar, the distribution is wider, meaning there is
more uncertainty about where the expected value lies, particularly towards the
Neutral level.

Figure 1c) shows the perception of how easy the tools are accessed in day-
to-day use. All tools rate between Quite Likely and Slightly Likely, though the
European Vue.JS participants lean closer towards Slightly Likely, while their
Indian counterparts lean more towards Quite Likely.

Finally, as shown in Figure 1d), we measured the intent to use the tool
in the future. Not surprisingly, the Vue.JS participants were most certain that
they would use Vue components, with the expected value close to Quite Likely
for both European and Indian cohorts. The Generative AI participants were
more skeptical, particularly the European cohort, where the expected rating
was estimated to lie between Slightly Likely and Neutral. The Indian cohort was
more positive, though close to Slightly Likely. Both Jaeger groups were equally
certain that they lean between Slightly Likely and Quite Likely to continue using
the tracing tool in the future.

Fifteen of the 19 participants in the Jaeger training also provided qualitative
responses. The thirteen positive responses range from: “Knowing that the tool
exists” to the more explicit: “Save significant debugging time when you have
visibility on complete code flow across components along with their respective
process time.” Five respondents found things to improve related to the training
(e.g., “Docker logins should be fully working”), and six respondents commented
on the Jaeger GUI (e.g., “I found the comparison feature difficult to understand”).

We also surveyed the teachers, achieving between 50% and 100% response
rates for the tool sessions. The most positive teachers were found in the Jaeger
track, where teachers indicated “it went generally well,” and “pretty much smooth.”
The primary Vue.JS track teacher indicated that the session probably had “too
much freedom,” and that “letting people choose what they want to do can be
overwhelming.” The teacher indicated that more structure and options would
be imposed if the track were held again. The single (out of two) AI teacher re-
spondent indicated that developers requested “more post-practices,” indicating
that the participants wanted more experience with the tool they partly devel-
oped. The Jaeger tracing and Generative AI teachers were Extremely or Quite
agreeing that they had enough time and resources for preparations and that the
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tasks were adequate for the participants. In contrast, one Vue.JS teacher was
only Slightly agreeing to those statements. However, all teachers enjoyed being
mentors and agreed that participants learned something useful.

Cycle 3: Follow-up of the training investigated Jaeger tool usage after
the training by analyzing page views of the setup instructions on the corporate
wiki5. Due to low page traffic, we conducted a follow-up survey one month later
to assess how participants applied their learnings and identify barriers to tool
adoption.

The survey had a low response rate, with only 23 replies, including six Jaeger
training participants, none of whom reported using the tool. However, they ex-
pressed motivation to use tracing for learning program flow, and slightly agree
that it would improve their understanding and development speed. All six re-
spondents provide qualitative feedback (e.g., “I will use it when needing to trace
something that is hard to track down in some other way”).

Conclusion Related to RQ1, respondents have a favorable view of the utility
of a tracing toolchain like OpenTelemetry and Jaeger to aid program compre-
hension. The expected intent to use the tools is close to “Quite Likely” and our
model is 95% sure that the intent to use is higher than “Slightly Likely”. This is
also confirmed by the qualitative data collected via the survey.

Related to RQ2, we find from qualitative survey responses that the respon-
dents view the training session positively, though two respondents indicate they
had to overcome troubles with the used environment. No respondents stated
that the problem was too complex or that the hints gave away too much. The
participants appear engaged, and they seem to appreciate the preparations.

Related to RQ3, web access logs indicate that the setup instructions were
rarely accessed, and survey responses, although limited, state that no respondent
had used the Jaeger tracing tool one month after training. However, all six
respondents reported that they were positive and would use it when they needed
to learn more about the product architecture. This might indicate that the tool’s
utility is real, but the need to use it is infrequent. We intend to follow up on
how the tool is perceived and how the competence spreads in the organization.

5 Learnings

5.1 Contribution to Theory

Our study indicates that tracing tools, such as OpenTelemetry and Jaeger are
valuable for visualizing system architecture and localizing features. However,
despite developers recognizing their usefulness, usage remains limited six months
after introduction and one month after training, suggesting these tools are used
sparingly, mainly when exploring new domains or unfamiliar features.
5 https://www.atlassian.com/software/confluence

https://www.atlassian.com/software/confluence
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The experiential learning event, featuring one structured track and four
“open-ended” problems, was well received, with all respondents providing posi-
tive feedback on their learning. Teachers also noted that they enjoyed guiding
participants and making new social connections.

5.2 Recommendations to Other Companies

We structure our recommendations according to the study phases:
Prepare problem(s) well in advance, and validate (using “fresh” developers)

that the problem is attainable, but still challenging. If possible, frame tasks in
the regular code base, not a synthetic toy problem.

Problems can be “open” or “closed”, and participants appreciated the “closed
path” in the beginning, while enjoying the “open tasks” when they had learned
more. To gain confidence in problem complexity, we used a representative devel-
oper to solve the “closed” problem, reviewing the number of hints needed and
their detail.

Hints should be at different levels of detail, and we used paper slips rather
than digital web pages. Teachers need to be prepared to disseminate these among
the training groups, according to where they are in the learning journey.

6 Conclusions and Future Work

Our study adds to the findings by Li et al. [7] and Gortney et al. [5] that tracing
can be an important tool to discover and learn about the product architecture.
However, even as training participants perceived the tool and training positively,
we found that these tools appear to be used relatively infrequently, possibly
because developers rarely venture into unknown components.

We created a “Goldilocks problem,” that was challenging yet attainable to
help students focus on learning the tool chain, and used three developers to
validate that the instructions were clear and unambiguous. Both students and
teachers appreciated the initial structured approach, along with the four open-
ended problems that allowed students to explore the tool freely.

Experiential learning [6] relies on attentive, self-directed students, so we pro-
vided hints of varying explicitness to participants as needed during the training.
Survey responses show students found training tied to their daily work more us-
able, with higher scores for the Vue.JS component and tracing tool tracks than
for Generative AI.

Despite developers expressing positive intent, one month after the training,
none of our respondents had used the tracing tool in their daily work. This
suggests that longer studies are needed to properly assess its adoption. We plan
to continue surveying developers over time to monitor their work practices.
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