
Towards Understanding
Software Craftsmanship

Anders Sundelin

Blekinge Institute of Technology Licentiate Dissertation Series
No 2021:07

Towards Understanding
Software Craftsmanship

Anders Sundelin

Licentiate Dissertation in
Software Engineering

Department of Software Engineering
Blekinge Institute of Technology

SWEDEN

2021 Anders Sundelin
Department of Software Engineering
Publisher: Blekinge Institute of Technology
SE-371 79 Karlskrona, Sweden
Printed by Exakta Group, Sweden, 2021
ISBN: 978-91-7295-427-4
ISSN: 1650-2140
urn:nbn:se:bth-22041

v

“Those who cannot remember the past are condemned to repeat it.”
- George Santayana; The Life of Reason, 1905

vi

Abstract

The concept of software craftsmanship has roots in the earliest days of com-
puting but has received comparably little attention from the research commu-
nity. As a reaction to how Agile methods were practiced and taught in in-
dustry, in 2009, the Manifesto for Software Craftsmanship was formulated and
published, drawing attention to the concept. Subsequent books and research
papers have also elaborated on the concept.

With this dissertation, we aim to study the software craftsmanship phe-
nomenon using empirical software engineering methods. We developed an anatomy
of software craftsmanship through a systematic literature study and a longitu-
dinal case study, following a project consisting of multiple teams over several
years. We also illustrate some consequences of not following through on the
espoused craftsmanship practice of managing and account for technical debt.
We find that some areas exhibited high growth in technical debt, while others
remained comparably idle. This indicates that it is important to keep track of
existing technical debt, but repayment should consider the distribution of each
kind of technical debt in the codebase.

Our studies are empirical, using mixed methods, analyzing quantitative as
well as qualitative data. We used thematic coding to structure the qualitative
data into themes, principles, and practices.

We provide our systematically derived anatomy of the principles and prac-
tices of software craftsmanship and discuss how these relate to other principles
within software engineering in general.

Keywords: Software Craftsmanship, Empirical Software Engineering, Agile
Software Development

viii

Acknowledgements

I am deeply indebted to my family—especially Katti, my dear wife, who has
borne the brunt of the work when I’m off into the clouds or deep into the
literature.

My supervisors and colleagues at Blekinge Institute of Technology have al-
ways been patient and supportive, striving to increase my understanding of the
essence of being a researcher.

Finally, my colleagues, past and present, at Ericsson AB—without you, this
research would have been for naught. Thank you all for your support and
interest in being part of this journey.

x

Overview of Papers

Papers in this Thesis
• Chapter 2: Anders Sundelin, Javier Gonzalez-Huerta, Krzysztof Wnuk.

“Test-Driving FinTech Product Development: An Experience Report”
Conference proceedings PROFES 2018 - Product-Focused Software Pro-
cess Improvement, 2018. DOI: 10.1007/978-3-030-03673-7_16

• Chapter 3: Anders Sundelin, Javier Gonzalez-Huerta, Krzysztof Wnuk,
Tony Gorschek. “Towards an Anatomy of Software Craftsmanship” ACM
Transactions on Software Engineering and Methodology (TOSEM). Ac-
cepted for publication 2021-05-27. DOI: 10.1145/3468504

• Chapter 4: Anders Sundelin, Javier Gonzalez-Huerta, Krzysztof Wnuk.
“The Hidden Cost of Backward Compatibility: When Deprecation Turns
into Technical Debt - An Experience Report,” in Proceedings of the 3rd
International Conference on Technical Debt, TechDebt ’20, 2020.
DOI: 10.1145/3387906.3388629

• Chapter 5: Anders Sundelin, Javier Gonzalez-Huerta, Krzysztof Wnuk,
Tony Gorschek. “Dear Lone Cowboy Programmer - your days are num-
bered!” Submitted 2021-07-22 to Communications of the ACM. Under
review.

Contribution Statement
Anders Sundelin is the lead author of all the papers in this thesis. As a lead
author, he took the main responsibility in designing the studies, collecting and

xii

analyzing data, and reporting the findings in peer-reviewed publications. Fur-
thermore, he is the sole author of Chapter 1, the overview. The co-authors’
contributions are described below.

Chapter 2: Krzysztof Wnuk wrote parts of Chapter 2.1, reviewed and com-
mented on intermediate versions and the final draft of the paper. Javier Gonzalez-
Huerta reviewed and commented on intermediate versions and the final draft of
the paper.

Chapter 3: Both Javier Gonzalez-Huerta and Krzysztof Wnuk participated
as researchers, reviewed, and commented on intermediate versions of the paper.
Krzysztof Wnuk summarized the SLR paper findings in Table 3.4 and was,
together with Javier Gonzalez-Huerta, highly influential in the methodology
section. Tony Gorschek provided valuable review insights and comments on
several versions of the paper, including how to structure the large paper into
digestible parts.

Chapter 4: Javier Gonzalez-Huerta provided valuable support regarding how
to present the different classes of TechDebt-items and reviewed and commented
on all drafts of the paper. Krzysztof Wnuk reviewed and commented on inter-
mediate versions and the final draft of the paper.

Chapter 5: Javier Gonzalez-Huerta wrote parts of Chapter 5.2.2, reviewed
and commented on intermediate versions and the final draft of the paper.
Krzysztof Wnuk wrote parts of Chapter 5.1, reviewed and commented on inter-
mediate versions and the final draft of the paper. Tony Gorschek reviewed and
commented on intermediate versions and the final draft of the paper.

Funding
This research was supported by the KKS PLEng 2.0 grant at Blekinge University
of Technology, and Ericsson AB, through the SHADE KKS Hög project with
ref: 20170176, and through the KKS SERT Research Profile with ref. 2018010
project both at Blekinge Institute of Technology, SERL Sweden.

Contents

Abstract vii

Acknowledgements ix

Overview of Publications xi
Papers in this Thesis . xi

List of Abbreviations xv

1 Overview 1
1.1 Introduction . 1
1.2 Background and Related Work 3
1.3 Research Questions and Contributions 4
1.4 Methodology . 7
1.5 Conclusion and Future Research 12

2 Test-Driving FinTech Product Development 15
2.1 Introduction . 15
2.2 Background and Related Work 16
2.3 Case Description and Analysis Method 17
2.4 Results and Discussion . 18
2.5 Implications for Research and practice 23

3 Towards an Anatomy of Software Craftsmanship 25
3.1 Introduction . 26
3.2 Background and Related Work 27
3.3 Research Methodology . 28
3.4 Systematic Literature Review Results 37

xiv CONTENTS

3.5 The Anatomy of Software Craftsmanship 41
3.6 Discussion and Implications . 82
3.7 Validity . 90
3.8 Conclusions and Future Work . 93

4 The Hidden Cost of Backward Compatibility: When Depreca-
tion Turns into Technical Debt 95
4.1 Introduction . 96
4.2 Related Work . 97
4.3 Research Methodology . 99
4.4 Results . 104
4.5 Threats to validity . 120
4.6 Conclusions . 122

5 Dear Lone Cowboy Programmer - your days are numbered! 123
5.1 Introduction . 124
5.2 Main observations . 127
5.3 Conclusions . 135

References 137

List of Abbreviations

xvi List of Abbreviations

Abbreviation Definition
API Application Programming Interface
ATDD Acceptance-Test-Driven Development, a development methodology
BDD Behaviour-Driven Design, a development methodology
CoP Community of Practice (also: Communities of Practice)
CPU Central Processing Unit
DDD Domain-Driven Design, a development style
DoD Definition of Done
DSL Domain-Specific Language
EJB Enterprise JavaBeans, a Java standard
GUI Graphical User Interface
IDE Integrated Development Environment
IP Implementation Proposal
IQR Inter-Quartile Range
ITLD Iterative Test-Last Development, a development methodology
kLOC kilo-LOC, one thousand lines of code
LOC one line of (non-commented) program code
PMD A tool used for static code analysis
PO Product Owner, a role
QA Quality Assurance, a process step, or a role
SLR Systematic Literature Review
SUT System Under Test
TA Team Architect, a role
TDD Test-Driven Development
TD Technical Debt
UML Unified Modeling Language
VCS Version Control System
XML Extensible Markup Language
XP Extreme Programming, a development methodology
XSD Extensible Stylesheets, used for processing XML

List of Figures

1.1 Research Methodology Overview. 8

2.1 Lines of code for each category, per release, P01, P02 and P03
are initial prereleases and R01 is the first commercial release. . . 20

2.2 Number and ratio of corrected defects for different versions. . . . 21

3.1 Timeline of major events in the studied system. 31
3.2 Process for Building the Anatomy of Software Craftsmanship. . . 35
3.3 The anatomy of Software Craftsmanship. 42
3.4 Layered view of the Initial architecture (a) and Layered view of

the Architecture after separating protocols from business logic (b). 46
3.5 Ratio of test code vs. production code over time. 55

4.1 Schematic view of the studied system, exposing services in differ-
ent versions. 101

4.2 Production and test files per quarter 102
4.3 Occurrences of services in Java or integration test code 107
4.4 Top 6 used deprecated service versions per quarter 109
4.5 Top 7-12 used deprecated service versions per quarter 110
4.6 Top 6 used deprecated service versions in Java files 111
4.7 Percentage of identical integration test files and LOC 114
4.8 Schematic illustration of Principal, Interest, First and Last metric

for integration tests of service Alpha v1.0 115
4.9 Count of commits affecting files using the top six deprecated ser-

vice versions across each quarter 118

xviii LIST OF FIGURES

List of Tables

2.1 Mean and median number of lines per file. 19

3.1 Snowballing Iteration Statistics and Results 31
3.2 Quarterly Developer Statistics . 33
3.3 Case Study Interviewee Background, Ordered by Industry Expe-

rience . 34
3.4 Papers Resulting from the Systematic Literature Review 38
3.5 Books Resulting from the SLR. Boldface Books Influenced Initial

Anatomy. 40
3.6 References to A Value-focused architecture 43
3.7 Summary Statistics of the Proportion and Type of Main Branch

Commits per Quarter . 50
3.8 References to D Iterative design, development, and verification . 51
3.9 Summary Code Statistic for the Five Major Code Types 52
3.10 References to C Shared professional culture 61
3.11 References to F Feedback . 74
3.12 Elapsed Calendar Days Per Feature Size and Activity. 76

4.1 Average lines per file across quarters. 103
4.2 Average number of authors each quarter, per year 104
4.3 Occurrences in files. 108
4.4 Most growing deprecated service versions, per quarter. 112
4.5 Least growing deprecated services, per quarter. 113
4.6 Affected files for all deprecated services 113
4.7 Affected files for unused services (Type-I TD items). 116

5.1 Elapsed Calendar Days Per Feature Size and Activity. 129

xx LIST OF TABLES

Chapter 1

Overview

1.1 Introduction

The history of computing has seen computers evolve from unique, specialized,
state-funded machines operated by strictly guarded principled programmers to
the ubiquitous computers, both embedded and general-purpose, that nearly
every person on the planet interacts with daily [13], [139]. This exponential
increase in computing power and availability has resulted in an explosion of
software professionals, from the few principled “program operators” of the 1950s
to today, where the market research firm Statista1 estimate that the number
of active software developers will grow from nearly 24 million in 2019 to more
than 27 million in 2023. Furthermore, today an interested and motivated non-
professional developer can build advanced applications using ever more capable
(often gratis) tools, such as spreadsheets, databases, web-frameworks, and even
model-building tools in Artificial Intelligence and Machine Learning. This sug-
gests that the number of people solving problems by constructing new software
is likely many times higher.

The ever-changing software technology requires constant software develop-
ment skills update. Languages, tools, and frameworks evolve and are updated
as features are added or vulnerabilities are fixed. The failure to update de-
ployed software can lead to breaches and loss of a substantial amount of money

1https://www.statista.com/statistics/627312/worldwide-developer-population/

2 Overview

and goodwill, as evidenced by the failure of Equifax to patch a two-month-old
vulnerability in the open-source Apache Struts framework2.

As evidenced in the Systematic Literature Review part of this thesis, Sec-
tion 3.4, the concept of Software Craftsmanship has a long history in computing,
dating from the earliest days of programming. Despite this, the number of peer-
reviewed papers written about craftsmanship remains low. Books dominate the
field, with McBreen [91] advocating the concept, contrasting it with a waterfall-
model of Software Engineering, similar to the way Royce [113] in 1970 set up the
model inspiring the original waterfall model of software development in order to
advocate an iterative, feedback-driven model (which, sadly, was largely ignored
for the next 20 years).

Martin [87] popularized the term by putting it in the subtitle of his book
that served as an initial inspiration for the case study described later in this the-
sis. The Manifesto for Software Craftsmanship3 was published in 2009, spurring
further development and more books. The general motivation for the manifesto
was the perception that Agile adoption in the industry was ignoring the more
technical Agile methodologies, such as Extreme Programming (XP), and was
focusing too much on the commercialization of more process-oriented method-
ologies such as Scrum [83].

The motivation for the work presented in this thesis is to understand the
concept of Software Craftsmanship and how it relates to current software engi-
neering practices. This thesis is structured based on four articles, three of which
have been published in peer-reviewed publications, and the fourth submitted to
a peer-reviewed venue.

The rest of this chapter discusses the general theme of software craftsman-
ship, with Section 1.2 discussing the overall background and related work. Sec-
tion 1.3 states the overall research questions and the research contribution, while
Section 1.4 discusses the methodology. The chapter closes with Section 1.5,
drawing conclusions and highlighting future research avenues.

The remainder of the thesis includes chapters published in, and submitted
to, peer-reviewed publications, as detailed in each chapter. Chapter 2 describes
the general context and draws preliminary conclusions based on mainly quanti-
tative metrics from a part of the studied system. Chapter 3 combines qualitative
analysis of literature findings and interview data with quantitative analysis from
a larger part of the studied system to draw a general concept map of themes,
principles, and practices. Chapter 4 discusses some of the consequences, in par-

2https://arstechnica.com/information-technology/2017/09/massive-equifax-breach-
caused-by-failure-to-patch-two-month-old-bug/

3http://manifesto.softwarecraftsmanship.org/

1.2 Background and Related Work 3

ticular, deprecation and backward compatibility requirements of applying these
practices to the test base of the studied system. Finally, Chapter 5 highlights
the findings and provides additional data bolstering our case for craftsmanship.

1.2 Background and Related Work
Books dominate the prior works on Software Craftsmanship, although we also
found a few research articles, as evidenced in Chapter 3.4. The concept was
mentioned by Brooks [17] nearly 50 years ago. In 2002, McBreen [91] contrasted
the Software Craftsmanship approach with the classical definition of Software
Engineering, citing the IEEE 1990 definition of Software Engineering, which he
claimed was a useful process for life-critical applications, but not when money
or budgets were a constraining factor.

In his seminal work defining the principles and importance of clean code,
Martin [87] included the term in the sub-title, which spread the term to a
broader audience. In 2014, Mancuso [83] wrote a book elaborating the concept
even further. Meanwhile, the interest in the concept had spurred conferences
and user groups worldwide, such as in the US4, UK5, and Germany6.

However, these books paint a picture of contemporary software engineering
that—while perhaps common in industry state-of-practice—fails to represent
the contemporary view of software engineering in research, particularly research
into Behavioural Software Engineering [77]. Starting from the closing argument
in McBreen: “Software development is meant to be fun. If it isn’t, the process
is wrong”, there is a direct connection to the research done on the happiness of
software developers [54], [55], and its impact on the performance of the individ-
ual, team, and organization.

In the chapter on Craftsmanship in Martin’s memoir [85], Mancuso states
that craftsmanship should be seen as an ideology, not a methodology. As such,
craftsmanship does not have direct practices but instead perpetuates the search
for better practices and ways of working. He also states that an essential part
of craftsmanship is professionalism and enabling clients to achieve their busi-
ness goals; it is wrong to assume that craftsmanship solely focuses on technical
practices, engineering, and self-improvement.

Test-Driven Development (TDD) is one of the most known practices of Agile
processes and is particularly associated with Extreme Programming (XP). How-

4https://scna.softwarecraftsmanship.org/
5https://sc-london.com/
6https://www.socrates-conference.de/

4 Overview

ever, researchers have identified several barriers to its wider industrial adoption,
for instance the systematic literature review conducted by Causevic et al. [20]
identified seven factors limiting industry adoption of TDD. In addition, several
experiments have been conducted to ascertain the effects of TDD on internal and
external quality [134], productivity [100], and the importance of programming
and testing skills [48].

1.3 Research Questions and Contributions

This section outlines the goal and overarching research questions that guided this
thesis and the corresponding research contributions. Detailed research questions
are stated and discussed in later chapters.

The goal explored in this thesis is to increase the understanding of the phe-
nomenon called “Software Craftsmanship” using empirical software engineering
methods.

1.3.1 Research Questions

This thesis explores four overarching research questions:

RQ1 How does intensive test automation support software craftsman-
ship?

Although already Dijkstra stated: “Program testing can be used very effec-
tively to show the presence of bugs, but never to show their absence” [37],
much of software engineering centers around effective ways of performing
software testing. Extreme Programming [7] and other Agile processes ad-
vocate Test-Driven Development [8] and state that requirements, in the
form of executable test cases, should be written directly by the require-
ment owner.

This research question is illustrated by highlighting that the focus on
developing functional tests will cause the test base to grow faster than the
production code (Chapter 2). Although this carries a cost in the form of
required maintenance (exemplified in Chapter 4), it also enables aggressive
refactoring of the production code, as discussed in Chapter 3.

1.3 Research Questions and Contributions 5

RQ2 What software craftsmanship principles and practices can be
identified in the literature and a real-life, multi-year project en-
compassing several teams?
Given that much of the software craftsmanship practices come from books
and non-peer-reviewed literature, we performed a systematic literature
study to explore how the area has been addressed in research studies,
and we used our case study to illustrate which practices could be seen
empirically. Although this has the limitation of being a single case, in a
particular setting, we adopted the pragmatic approach of “truth is what
works in a given situation.”
This research question is answered by the literature review and case study
results in Chapter 3, summarized in the concept map, Figure 3.3, with
associated detailed results.

RQ3 What effects can be seen by postponing the craftsmanship prin-
ciple of cleaning up technical debt related to deprecated code
usage?
This research question is the topic of Chapter 4, which describes how
postponing “keeping code clean and up-to-date” in some cases caused
additional debt to spread in the test base, but in other cases, the effects
were benign. The main message from this chapter is that a visualization
system of the prevalence and spread of technical debt would have been
beneficial for judging which rules to apply.

RQ4 What are the practical implications of software craftsmanship
on software development practices?
This research question is discussed in Chapter 5, where we bring up the
practical implications of software craftsmanship to a broader audience.

1.3.2 Research Contributions
This licentiate thesis contributes to the software engineering field by highlighting
the principles and practices of software craftsmanship. Contributions are listed
per chapter.

C1 Highlighting the importance of testing in layers and managing the
growth of test cases (RQ1)
As is illustrated in Chapter 2 and Chapter 3.5, when testing is automated,
the amount of test code can be expected to grow at least as fast (typically

6 Overview

faster) than the production code. This means that standard software
engineering approaches also apply to test code, which has to be managed
as any other artifact. The chapter also introduces, but does not elaborate
further on, how to manage test code refactoring by seeding production
code with errors that should be found both with the original and refactored
test code.

C2 Providing the anatomy of software craftsmanship, with its prin-
ciples and practices, based on literature and a large-scale indus-
trial case study. (RQ2)
Chapter 3 describes both the literature search and empirical findings from
a case study and uses these data sources to derive a concept map of Soft-
ware Craftsmanship illustrated in Figure 3.3.
While we do not claim the generalizability of the map, we have made sure
to include aspects from both literature and the case study result in the
final map while keeping a traceable path to the concepts.

C3 Highlighting the importance of proper technical debt accounting
and visualization techniques, exemplified via deprecated code
usage in test code. (RQ3)
In Chapter 4, we add evidence to the claim by Kruchten et al. [72], stat-
ing that: “The most likely cause [of Technical Debt] is schedule pressure.”
Furthermore, we show the importance of visualizing and accounting for
the technical debt related to deprecated code usage in the different test
codebases in the studied case. With IDE support for visualizing depre-
cated code in a strike-through font, the Java codebase showed no growth in
deprecated version usage. In contrast, debt in parts of the XML code base,
lacking such visualization, grew considerably for a limited time. We also
show that the growth in technical debt was highly right-skewed (concen-
trated to a few, highly used services). This implies that rank lists, rather
than measures of central tendency, should be used to manage technical
debt related to deprecated code usage.

C4 Providing practical, actionable advice on how to enable software
craftsmanship in an organization. (RQ4)
Chapter 5 highlights the central themes of accountability, feedback loops,
skills, and fostering a shared professional culture to build well-crafted soft-
ware. We explicitly try to change the stereotype voiced by Boehm [13] as a

1.4 Methodology 7

software craftsperson being a “lone cowboy programmer” by highlighting
the community aspect of modern software development.

1.4 Methodology

1.4.1 Research Methods
Easterbrook et al. [39] provide guidance on what empirical methods to use when
conducting Software Engineering research and what empirical answers different
philosophical stances will accept as empirical truth.

The positivist approach, which has been the standard philosophical view of
the natural sciences, states that all true knowledge must be based on logical
inference from a set of basic observable facts. Typically, this requires studies
that break down complex scenarios into smaller, simpler components.

The constructivist (or interpretivist) approach [70], in contrast, states that
scientific knowledge has to be viewed from its human context. It emphasizes
the fact that social theory terms are socially constructed. Hence, interpretations
of what a theory means (in a particular context) are equally important as the
empirical observations on which it is based.

Adopting critical theory [19], on the other hand, would view research as
a political act, as knowledge acquisition empowers different societal groups or
entrenches pre-existing power structures. Therefore, critical theorists typically
engage in participatory research methods, striving to influence or steer the di-
rection of the studied subjects.

In contrast, pragmatism [94] takes an engineering approach to science, ac-
knowledging that knowledge is approximate, judging its value by its practical
problem-solving utility: “truth is whatever works at the time.” Many pragma-
tists acknowledge the need for consensus; truth can be found during rational
discourse, while the participants weigh whoever has the better arguments. Prag-
matism also explicitly acknowledges that usefulness is relative; what is useful to
one person (or organization) might not be useful to another.

This thesis focuses mainly on descriptive, exploratory studies and is most
closely aligned with the pragmatic approach. Through our case study we do
not aim for statistical generalizability but to achieve analytical generalizability,
via cross-referencing the literature results, and by validating the consolidated
results with the studied subjects. Likewise, we have not delved into action
research inspired by critical theory, as the events are, in effect, described post
factum, without any particular research influence. While the author was part of

8 Overview

the studied organization, he was not a researcher and was not aware of action
research philosophy or methods.

Concept Consequences Advice

R
Q
1

Chapter 2
Experience Report

R
Q
2

Chapter 3
SLR & Case Study

R
Q
3

Chapter 4
Experience Report

R
Q
4

Chapter 5
Research Synthesis

Figure 1.1: Research Methodology Overview.

As illustrated in figure 1.1, the studies described in this thesis were conducted
using both a fixed design, in the form of a Systematic Literature Review, and
a flexible design, in the form of a Case Study, using mixed-methods research
tools. The experience reports mainly used quantitative data, processed using
version-controlled scripts and standard data processing tools.

Literature Review

In 2004, Kitchenham et al. [69] proposed adopting an evidence-based approach,
much like the medical sciences, rather than relying on expert opinions or anec-
dotal evidence. Performing a Systematic Literature Review (SLR) [68] is one
proposed method to gather available evidence for a particular research question.
Other methods, such as Systematic Mapping Studies [104], can also be used and
have various pros and cons relative to an SLR.

We used Wohlin’s snowball approach to SLRs [140], with forward (citations)
and backward (references) snowballing phases. Based on a search string in

1.4 Methodology 9

Google Scholar, we selected nine starting papers (the start set). According to
Wohlin, the start set should: (i) include papers from all relevant communities
(clusters), (ii) not be too small, (iii) if too large, can be reduced by including
only the most relevant and highly cited papers, (iv) cover diverse publishers,
years and authors, and (v) be formulated from keywords in the research question.
After performing two rounds of seed selection and iterating four snowball phases,
we found only nine additional research papers, of which few were peer-reviewed.
We augmented our search with the selection of books that were referenced by
the found papers. The full results are found in Chapter 3.4.

Case Study

We used the case study methodology described by Runeson et al. [114] in an
exploratory and descriptive setting, with a single unit of analysis (the studied
project, which we followed for seven years). Alternative approaches could have
been action research [78], ethnography [122], or grounded theory study [53].
Following Robson and McCartan [111], choosing action research would have
been suitable if we were conducting research in order to change, improve or
influence the observed unit; ethnography would have been appropriate if we had
planned the study before being immersed in the studied case; and grounded
theory would have been appropriate if we were to develop a new theory of
a particular research question or smaller area, such as “Why developers care
about or ignore the continuous integration results?” In contrast, the field of
Software Craftsmanship (as illustrated in Chapter 3) is vast, encompassing a
wide breadth of software development practices. Therefore, we adopted the
case study approach, which explicitly states that multiple sources of evidence
are used [142]:

A case study is an empirical inquiry that investigates a contem-
porary phenomenon (the “case”) in depth and within its real-world
context, especially when the boundaries between phenomenon and
context may not be clearly evident.

A case study inquiry copes with the technically distinctive situation
that there will be many more variables of interest than data points,
and as one result relies on multiple sources of evidence, with data
needing to converge in a triangulating fashion, and as another result
benefits from the prior development of theoretical propositions to
guide data collection and analysis.

10 Overview

We mined source code and test repositories, defect tracking systems, and
wikis to obtain quantitative evidence. To increase validity, we used data tri-
angulation (several methods of data collection), observer triangulation (sev-
eral researchers participating), and methodological triangulation (using both
quantitative and qualitative methods). Robson and McCartan [111] notes that
while triangulation can increase validity, it can also raise logical and practical
difficulties—for instance, if the data from different sources are contradictory or
hard to compare directly. While analyzing data, we highlighted contradictory
or non-confirmatory evidence, reporting this in our findings.

We used thematic coding [14] to analyze qualitative data, as exemplified by
Cruzes and Dybå [29]. We used the Integrated Approach, i.e., we started with a
deductive set of codes (based on reading literature and case study experience)
and allowed the creation of new codes as the responses (interview data and
literature) were processed.

Experience Reports

Compared to the case study and systematic literature review studies, the ex-
perience reports in this thesis followed a less stringent method. In order to
increase the correctness of our findings, we kept an audit trail by keeping the
analysis and collected data in a version-controlled repository. We used standard
statistical processing tools (scripts, the R programming language, and RStudio)
to process data and generate figures.

We increased the validity of the conclusions by presenting the findings to the
studied organization and receiving feedback, albeit in an unstructured format.
In some cases, this led us to rephrase and clarify the presentation of our findings.

Research Synthesis

In Chapter 5, we synthesized the findings, mainly from Chapter 3, adding some
additional conclusions to give more practitioner-oriented advice. Cruzes et
al. [30], [31] highlight the importance of case studies synthesis, and we hope
to be able to perform cross-case analysis in future work.

1.4.2 Limitations and Threats to Validity
The validity of research is central to the trustworthiness of the results and
the generalizability of the findings [114]. In Software Engineering, validity is

1.4 Methodology 11

commonly discussed from four angles: construct validity, internal validity, ex-
ternal validity and reliability. However, other perspectives are also possible.
Maxwell [90] advocate a typology for flexible design studies such as case stud-
ies that focuses on the three types description, interpretation and theory. In
this thesis, each study (chapter) reports on the detailed threats to validity. For
the overarching description, we will adopt the classification commonly used in
Software Engineering [141].

Construct validity deals with the extent to which the operational mea-
sures really represent what the researcher had in mind (i.e., what the research
questions state). Questions may be interpreted differently; a measurement de-
vice such as a thermometer is a bad predictor if the research question concerns
whether or not to bring an umbrella for the lunch walk, and so on.

Throughout this thesis, we used various quantitative measures elicited from
source code repositories, defect tracking systems, and requirements handling
systems. When dealing with such measures, it is important to assess both the
correctness (including completeness) of the data within the system and how the
derived measures reflect the research question.

Chapter 2 presents quantitative measures related to code size (volume) and
defects (internal and external), together with author experiences. The main
threat to construct validity is whether the quantitative measures, such as test
base size, can be used to assess the amount of craftsmanship or if there were
other consequences that caused the large growth in test code. We increased the
construct validity of the measures by presenting the findings for parts of the
studied organization and getting feedback.

Chapter 3 includes more qualitative data, including interview guides, tran-
scripts, and literature. We increased the construct validity by letting two addi-
tional researchers play “devil’s advocate,” taking a critical view of the proposal
of the first author. We also presented intermediate versions of the concept map
to parts of the studied organization.

We took a similar approach in chapter 4, primarily built on quantitative
data from the source code repository. The main threat to the construct validity
here is whether the quantitive metrics (e.g., presence or absence of a deprecated
item in a file) are related to the concept of technical debt and how this is
related to craftsmanship. Five developers with experience from throughout the
studied period were interviewed to assess the conclusions and the validity of the
measures.

Internal validity deals mainly with causal relation (A causes B, or does
not cause B). When investigating causal relationships, there is always a risk that

12 Overview

unknown confounding factors influence outcomes, and internal validity concerns
how to minimize this risk.

In the studies in this thesis, we mainly deal with descriptive and exploratory
findings and make few causal inferences. We validated the conclusions regarding
the large test base and its connection to the fact that the organization used their
self-stated “Test-Focused Development” principle by presenting the findings to
a subset of the studied organization.

External validity (or generalizability) deals with to what extent it is pos-
sible to generalize the findings and whether the findings are interesting for other
people outside the studied case. All of the studies in this thesis were performed
in a particular project in a single company. At face value, this would limit
the external validity. However, we have also incorporated other viewpoints by
conducting a multi-vocal systematic literature review, bringing in perspectives
from other organizations. Nevertheless, the application of our findings might be
different in other situations, such as where requirements are more fixed (either
due to legal regulations, the laws of physics, or other rigid constraints).

Reliability is concerned with whether and how the data and analysis depend
on the specific researchers. As stated in the individual chapters, the author
of this thesis was engaged in the studied organization for a large part of the
studied period, which is a significant threat to validity. To counter this threat,
we used two impartial researchers during data gathering (e.g., interviews) and
analysis. We also kept an audit trail (i.e., a record of activities) while conducting
the studies. While parts of this trail are public (e.g., the SLR findings and
interview questions, see Chapter 3), other parts (e.g., interview transcripts,
coding system) are available to reviewers upon request.

1.5 Conclusion and Future Research
We note the general overlap between Software Craftsmanship, Agile and Lean,
as framed in the leading books on the subjects. However, there are also overlaps
with modern Software Engineering, in particular Behavioural Software Engi-
neering [77], where researchers strive to describe and understand the thoughts
and decision processes of software developers, teams, and organizations from a
psychological perspective.

However, there are also differences. The code kata concept, and the delib-
erate practice it espouses, have only a few research articles listed on Google
Scholar and seems to warrant a deeper, more systematic study. The fact that
the lead developers in the studied case were cognizant of the importance of

1.5 Conclusion and Future Research 13

the shared professional culture—and therefore demanded the initial outsourced
teams to be physically located at the main site while being imbued in the profes-
sional culture—should also be studied more systematically, as this goes against
the general outsourcing state-of-practice.

Is Software Craftsmanship a mere Platonic ideal, unobtainable for those of
us stuck down in the day-to-day, coding-for-a-living cave? Perhaps—but this
does not prevent us from studying the shadows on the cave wall, trying to draw
conclusions, and, not the least important, trying to instill a sense of profes-
sionalism in the next generation of programmers, wherever they are physically
located.

We do believe that our anatomy map also incorporates the need for con-
tinuous improvement. Indeed, we are confident that future versions of the
craftsmanship principles and practices will have to consider how to structure
feedback, verification, and validation loops when dealing with scarce resources
such as long-running Machine Learning or Artificial Intelligence models or mas-
tering the qubits in a physically manifested quantum computer. Given the
increasing complexity and importance of software in the world, we are certain
that the need for professionalism will grow, particularly where physical objects
are affected.

14 Overview

Chapter 2

Test-Driving FinTech
Product Development

This chapter is based on the following paper:
A. Sundelin, J. Gonzalez-Huerta, and K.Wnuk, “Test-Driving FinTech Prod-

uct Development: An Experience Report,” in International Conference on Product-
Focused Software Process Improvement, Springer, 2018, pp. 219–226, isbn: 978-
3030036737. doi: 10.1007/978-3-030-03673-7_16

Abstract
In this paper, we present experiences from eight years of developing a financial
transaction engine, using what can be described as an integration-test-centric
software development process. We discuss the product and the relation between
three different categories of its software and how the relative weight of these arti-
facts has varied over the years. In addition to the presentation, some challenges
and future research directions are discussed.

2.1 Introduction
Software and software products are the critical elements of the Financial Tech-
nology (FinTech) [76] revolution that reshape the way how individuals and finan-
cial institutions save, borrow, make payments, and manage risk [49]. Software

https://doi.org/10.1007/978-3-030-03673-7_16

16 Test-Driving FinTech Product Development

is enabling societal change in our relationship with money, especially in devel-
oping economies where alternative financial services are more customer focused
and allow more people to have access to finance without the need of a bank
[12]. Ericsson has seen the opportunity that FinTech offers as early as 2010 and
decided to create a financial product for developing economies that provides ac-
cess to payment services to users without credit card or bank account. Ericsson
developed the product considering market demands and requirements such as
security, auditing, correctness, performance, availability, flexibility, fast time to
market and development efficiency.

In this paper, we discuss experiences on how Ericsson tackled the problem
of crafting a software product for the financial sector not only migrating to a
modern programming language and with a Service Oriented Architecture, but
also using modern ways of developing the software such as test-driven devel-
opment, integration tests, continuous integration, clean code, learning by doing,
mandatory solution review and simple communication. Several studies analyze
the effects that TDD has on code quality and defect rate [89], [98], though
few studies analyze the long-term effects that TDD might have in the project,
regarding the number of defects and the size of the test base as compared to
the code base. Moreover, there is a lack of longitudinal experience reports of
developing Fintech products for global markets.

2.2 Background and Related Work
Although it has earlier roots in the Smalltalk community, the term Test-Driven
Development was popularized in the late 1990s and described as part of the
Extreme Programming process, [7], [8]. Several scientific studies have analyzed
the effects of TDD e.g., [40], [89], [98].

In an experiment described in [47], the authors compare TDD with the alter-
native iterative test-last (ITLD) process, concluding that the claimed benefits
of TDD arise not from its test-first approach, but from the fine-grained, steady
steps, with fast feedback that improve focus and flow. Our paper supports this
conclusion, adding aspects of product development over eight years.

One of the first public tools to support automated acceptance tests was the
Framework for Integrated Tests (Fit) 1. The acceptance-test-driven develop-
ment (ATDD) process [107] was studied in [57], [93].

Most of the studies of TDD have focused on shorter timescales, from some
weeks, up to a few years worth of software development. This paper adds

1http://fit.c2.com/

2.3 Case Description and Analysis Method 17

experiences from eight years of building a product from scratch using rigorous
testing methodologies, and the effects that this has had on the code base.

2.3 Case Description and Analysis Method
The system under study forms part of a FinTech global product that enables
access to financial services via mobile phones and the Internet. It is typically
installed in a high-availability configuration, with geographical redundancy, to
meet service uptime requirements. The system is a transaction-intensive appli-
cation, with incoming and outgoing interfaces, a database, and scheduled tasks
such as the sending of notifications. As it is a financial application, security has
played a central role in its development.

The studied system consists of the financial core of the application, contain-
ing the core business logic, such as the financial transaction management. The
core exposes its services via a set of requests, similar in spirit to the system calls
of the Unix kernel. There are other components in the product, such as user
interfaces, both graphical and textual, but these are not studied in this report.
All other components use the services of the core in order to perform their tasks.
The system is built in Java, using EJB 32 principles and is deployed using a
custom, light-weight EJB container, also exempt from this study.

One of the guiding principles when developing this application was intensive
test automation. Testing should take place in different layers, with the bulk of
the tests in the lower layers (unit tests), and progressively fewer tests the higher
the abstraction level. This follows the principles outlined in the testing pyramid
[25].

2.3.1 Studied artifacts
We analyzed the production code and test artifacts developed by the devel-
opment team during feature development. Ericsson also has dedicated testing
teams, focusing on testing the complete system, including all required special
hardware, such as hardware cryptography modules and application firewalls,
but these activities are not studied in this report.

The studied software is classified according to the following three categories:

• Production code - which is deployed at the customer site, and perform
some useful action in live deployed systems.

2http://download.oracle.com/otndocs/jcp/ejb-3.1-pfd-oth-JSpec

18 Test-Driving FinTech Product Development

• Unit test code - which is developed alongside the production code, typically
by the same developer.

• Integration test code - using the externally visible interfaces of the system,
typically describing the use cases that the application shall provide. Inte-
gration tests are developed by the same team and at the same time as the
production code, though typically by different developers.

In addition to these three categories, the system also contains small amounts
of other software and configurations files, such as installation support software,
test enablers that aid integration testing, and system test code for testing the
entire software system.

The number of authors of the studied software has varied over time, due
to business and organizational changes. For the production and unit test code,
the number of authors has been between 9 and 74, with a median of 35. The
integration tests have a slightly wider span, between 8 and 79 authors, also with
a median of 35. The majority of developers (median: 29.5) has developed both
production code and integration tests.

2.3.2 Tools
We use the common open-source tools cloc3 and Git4 in order to calculate
statistics for the above-mentioned categories. We collected statistics for every
feature-enhancing release made of the product, plus three initial “pre-releases”,
denoted P01, P02, P03, before the first commercial release, denoted R01, in
mid-2012. On average, 81 days have passed between releases, with a median of
62.5 days and an IQR of 55.5 days. There have also been other releases made
of the software, both for error corrections, and candidates meant for internal
testing.

2.4 Results and Discussion
2.4.1 Size of the code base
Table 2.1 lists the mean and median lines per file and Figure 2.1 illustrates the
number of lines of code per category, for each studied release. The last studied
release, R32, consists of about 5000 files of production code, and about half as

3https://github.com/AlDanial/cloc
4https://git-scm.com/

2.4 Results and Discussion 19

Table 2.1: Mean and median number of lines per file.

File type Mean lines/file Median lines/file
Production code (Java) 90 55
Unit test code (Java) 228 163
Integration test (XML) 133 97

many unit test files. The number of integration test files is more than double
the number of production files, about 12000.

Figure 2.1 shows a linear growth, with integration test code (red) dominating
over production code (green). While the production code has grown from about
42 kLOC in 583 files in the first preliminary release, to about 460 kLOC in 5166
files in the last studied release, the number of lines of integration tests has grown
to 1488 kLOC, in 11211 files. The first two preliminary releases contained no
integration tests but were tested using other tools, later discarded due to lack
of productivity. To enable efficient integration testing, the developers chose to
develop an XML-based testing tool. The tool was first used in the P03 release,
which comprised of 110 kLOC integration test code lines, distributed in 622
files.

Regarding the unit test code (blue), we see that starting from release R11,
the number of lines of unit test code exceeds the number of lines of production
code. In the latest studied release, there are about 30% more lines of unit test
code than of production code. Thus, the unit test code base is also growing
faster than the production code, though not as fast as the integration tests.
The fact that the typical unit test file is larger than the typical production code
file supports the notion that the tests are mostly concrete code, in the typical
Arrange, Act, Assert fashion, whereas the production code consists of a higher
number of interfaces and abstract classes.

We can conclude that this is a product where test code, both unit tests, and
integration tests, make up the bulk of the software. As the growth rate of both
the unit tests and the integration tests are higher than for production code, it
becomes a necessity to manage this growth, for instance by reducing duplication
and increasing modularity and reusability. The importance of this increases as
the product ages and grows.

20 Test-Driving FinTech Product Development

0

500000

1000000

1500000

P01P02P03
R
01

R
02

R
03

R
04

R
05

R
06

R
07

R
08

R
09

R
10

R
11

R
12

R
13

R
14

R
15

R
16

R
17

R
18

R
19

R
20

R
21

R
22

R
23

R
24

R
25

R
26

R
27

R
28

R
29

R
30

R
31

R
32

version

s
u
m

_
c
o
d
e

category

integrationtest

production

unittest

Figure 2.1: Lines of code for each category, per release, P01, P02 and P03 are
initial prereleases and R01 is the first commercial release.

2.4.2 Defect prevalence

Figure 2.2 shows the number of corrected defects per release. The upper (red)
line is the total number of corrected defects, the middle (green) line is the
number of defect corrections that are new to the release, and the lower (blue)
line is the ratio between the defects new to the release and the size in kLOC of
the production code base.

The defects in this statistic include those found by customers in the field,
internal testing organizations during system verification, and those found by
the developers after the release of a feature. Defects found by developers during
the development of a feature are not included. No goals or penalties related to
the number of found defects in the product have been used by the organization,
though goals related to the defect response time have been used. Thus, it is
unlikely that developers have refrained from issuing defect reports in order to
fulfill some target objective.

2.4 Results and Discussion 21

a
ll

n
e
w

trs
_
p
e
r_

p
ro

d
_
k
lo

c

P02P03
R
01

R
02

R
03

R
04

R
05

R
06

R
07

R
08

R
09

R
10

R
11

R
12

R
13

R
14

R
15

R
16

R
17

R
18

R
19

R
20

R
21

R
22

R
23

R
24

R
25

R
26

R
27

R
28

R
29

R
30

R
31

R
32

50

100

150

200

50

100

0.0

0.5

1.0

1.5

version

tr
s

kind

all

new

trs_per_prod_kloc

Figure 2.2: Number and ratio of corrected defects for different versions.

It is quite evident from the picture that the ratio of defects was higher at
the beginning of the product lifecycle when there were few lines of production
code, and none or few integration tests. It is also quite evident that some
releases contain more corrections than others. There are two reasons for this:
Some releases (e.g. R24 and R26) contained many corrections from customer
branches, which was then integrated into the main branch. Some releases (e.g.
R25) was made very close in time to the prior release, causing it to contain fewer
changes. Further analysis of the defect origin is deferred to another paper.

2.4.3 Changes to the code base
By using git diff to analyze files changed in each version, it is possible to get
an overview of the changes in the code base. It should be noted that this is
only the “net change”, as this statistic does not capture files that have changed
multiple times between versions. Also, lines are reported regardless of whether
it is a code or comment line, and a changed line is counted as both an added
line and a removed line.

On average, between versions, production code have added 28372 lines and
removed/changed 14535 lines in 884 files, unit tests have added 32891 lines
and removed/changed 12934 lines in 565 files, and integration tests have added
75005 lines and removed/changed 39424 in 2530 files. This is another way of

22 Test-Driving FinTech Product Development

illustrating that changes to the integration tests dominate over the production
and unit test code.

2.4.4 Guiding Principle: Test fast, test in layers
While the ATDD and TDD processes were encouraged, explained and exercised
during onboarding of new developers, it was still up to each developer to do
their tasks in the order they preferred. Thus, it is likely that some develop-
ers followed other processes, such as Incremental Test-Last (ITL) [47]. The
common ground between these two processes is that tests should be developed
as close (organizational and temporal) to the production code as possible, and
refactorings should be performed when all tests succeed. This is in contrast to a
more traditional “Design-Implement-Test” approach, where typically the tests
are developed once all, or most functionality is implemented.

The organization actively required that tests were developed as the require-
ments were implemented. No feature was allowed into the product without
having the required supporting test base. Also, there were continuous discus-
sions among developers, how a feature should best be verified, and what things
that were the most important to verify. As is shown in the defect statistics,
figure 2.2, the integration test base helped limit the number of defects as the
product has grown. One of the consequences of this principle is that the amount
of test code will grow, in parallel with the growth of the production code. We
see in the reported statistics that both the unit tests and the integration tests
grow faster than the production code.

Both the number of files and the number of lines of integration tests is much
greater than the corresponding metrics for production and unit testing code.
In part, this stems from the use of XML as a specification language for the
integration tests.

One obvious benefit of having a separate language for integration tests is that
it is possible to enforce certain rules, by only implementing wanted features in
the language executor. For instance, in the current integration test language,
there is no support for conditional branches and only limited support for iter-
ative loops. Another benefit is that developers specifying the integration tests
have a clear line between the production code/unit tests and the integration
tests. They can safely ignore the Java syntax and features in the Java language.

The most severe disadvantage of the separate integration test language is
that the lack of effective module support causes the number of lines of integra-
tion tests to grow faster than the production code and unit test code. Another
disadvantage is that there is no IDE support, such as code completion, refac-

2.5 Implications for Research and practice 23

toring or debugging support, out of the box. Thus, trivial transformations or
reports such as rename method, or find usages becomes difficult for developers
not well versed in file system and text processing tools such as find, grep, awk
or perl. Due to the lack of code completion, there is also the risk of longer de-
velopment times, and developers being unaware of similar functions for setting
up the scenarios.

2.5 Implications for Research and practice
As can be devised from the statistics shown in Section 2.4, the product currently
consists of considerably more lines of test code than production code. In order
to be able to work efficiently and develop with speed, it is imperative that
this test code is kept clean and undergoes a similar refactoring scheme as the
production code. A design principle used when developing test cases is that
each test should be “self-contained”, and “self-specified”. Each test case should
specify its required state, and asserts should reference this state, and not obscure
references to other “magic numbers”. The disadvantage of “the self-containment
principle” is that naïve developers may copy code, instead of extracting sections
into methods or modules.

Care has to be taken when refactoring test code. In particular, it is impor-
tant that the principles of Arrange, Act, Assert continues to hold for each test.
Also, each test case should continue asserting everything it asserted before the
refactoring, to avoid causing the refactored test case to be more lenient than
the original one. The Arrange phase, however, should be as lenient as possible,
only specifying the minimal state required to make the test succeed. Different
initial states are typically referred to as fixtures, and to avoid undue repetition,
it is important to keep track of which fixtures that are already available when
writing new test cases.

A solution to the test refactoring problem is to introduce known errors in
the production code while refactoring the test code, checking that both the old
and new test cases catch the introduced errors. Once a satisfactory refactoring
has been completed, the new, refactored test case is committed, and the intro-
duced errors reverted, leaving the original (non-faulty) production code. This
field should be studied more thoroughly, e.g., whether the refactoring validation
process can be automated, or if some static rules could be devised.

24 Test-Driving FinTech Product Development

Chapter 3

Towards an Anatomy of
Software Craftsmanship

This chapter is based on the following paper:
A. Sundelin, J. Gonzalez-Huerta, K. Wnuk, et al., “Towards an anatomy

of software craftsmanship,” ACM Transactions on Software Engineering and
Methodology (TOSEM), to appear, 2021. doi: 10.1145/3468504

Abstract
Context: The concept of software craftsmanship has early roots in computing,
and in 2009, the Manifesto for Software Craftsmanship was formulated as a
reaction to how the Agile methods were practiced and taught. But software
craftsmanship has seldom been studied from a software engineering perspective.

Objective: The objective of this article is to systematize an anatomy of
software craftsmanship through literature studies and a longitudinal case study.

Method: We performed a snowballing literature review based on an initial
set of nine papers, resulting in 18 papers and 11 books. We also performed
a case study following seven years of software development of a product for
the financial market, eliciting qualitative and quantitative results. We used
thematic coding to synthesize the results into categories.

Results: The resulting anatomy is centered around four themes, containing
17 principles and 47 hierarchical practices connected to the principles. We

https://doi.org/10.1145/3468504

26 Towards an Anatomy of Software Craftsmanship

present the identified practices based on the experiences gathered from the case
study, triangulating with the literature results.

Conclusion: We provide our systematically derived anatomy of software
craftsmanship with the goal of inspiring more research into the principles and
practices of software craftsmanship and how these relate to other principles
within software engineering in general.

3.1 Introduction
The notion that programmers should be responsible for what they produce has
early roots. Already in 1975, Brooks [17] mention “invention and craftsmanship”
as prerequisites for efficient optimization techniques, and he also envisioned “the
surgical team” as an efficient way of developing mission-critical software. In
2002, McBreen published a book [91], formalizing the software craftsmanship
concept, and since then, several books have been written on the subject [83],
[86]–[88]. Another early inspirational work was published in 1999 by Hunt and
Thomas [61].

The Manifesto for Software Craftsmanship1 was published in March 2009,
seven years after the Agile Manifesto2. The original signatories intended to
address what they saw as deficiencies in how the Agile Manifesto principles had
turned out in practice, as taught by coaches and certified institutions, and to
emphasize the need to “make the thing right.” The Software Craftsmanship
movement lives on, twelve years after the manifesto was published. There are
associated communities and conferences such as Socrates3 in Europe and SCNA4

in North America. However, we have not found any systematic definition of
software craftsmanship principles and practices in research.

This article moves towards this goal by providing an anatomy of software
craftsmanship based on a systematic literature study and a longitudinal case
study of a software product developed by an organization that was following
software craftsmanship principles. In doing so, it moves towards systematizing
and making explicit the software craftsmanship principles and practices to the
broader research community, as there seems to be a lack of research papers in
this area, as evidenced in Section 3.4.

1http://manifesto.softwarecraftsmanship.org/
2http://www.agilemanifesto.org/
3https://www.socrates-conference.de/
4https://scna.softwarecraftsmanship.com/

3.2 Background and Related Work 27

The case study subject was a unit within Ericsson developing a new soft-
ware product for seven years. The product operates in the financial sector and
is in use in around twenty installations around the world. Due to the stringent
requirements of financial systems and the values of the developing organization,
the product was developed from scratch, highly inspired by craftsmanship prin-
ciples, such as test-focused, agile, and lean software development, with a high
focus on clean code and refactoring. These principles were also spread to new
developers joining the product.

The article is structured as follows: In Section 3.2, we give the background
and related work of software craftsmanship and define the terms we use through-
out the article. In Section 3.3, we report on our research methodology, with
Section 3.3.1 focusing on the systematic literature study, Section 3.3.2 focusing
on the case study methodology, including the studied context, and Section 3.3.3
focusing on the process of building the anatomy. In Section 3.4, we report on
the results of the Systematic Literature Review (SLR), and in Section 3.5,
we merge this with the quantitative and qualitative results of the case study to
produce our version of the anatomy of software craftsmanship. In Section 3.6,
we discuss the implications for the software development community at large.
In Section 3.7, we discuss the threats to the validity of the study. In Section 3.8,
we draw on the analysis, outline future work and research directions, and make
conclusions.

3.2 Background and Related Work

The Craftsmanship movement builds upon Agile and Lean principles and prac-
tices, but with a stronger emphasis on building high-quality products by teams
with a shared professional culture. The Manifesto for Software Craftsmanship
was published in March 2009, following a summit in December 2008, where
around 30 participants gathered to discuss what they perceived had been lost
as the software industry adopted the Agile Manifesto. In particular, the lack
of focus on the more technical practices in Agile processes such as Extreme
Programming (XP) was a concern.

There have been several books and seminal works before 2008 (e.g., the books
by Brooks [17], Hunt & Thomas [61], McBreen [91], Martin [86]–[88] and later
also Mancuso [83]) that provide insights into the concept, the practices, and the
potential benefits of Software Craftsmanship. However, very few research works
delve into the formalization of the concept, with its principles and practices,

28 Towards an Anatomy of Software Craftsmanship

with buttressing, real-world empirical evidence from cases where craftsmanship
principles were put into operation.

If we look at the Agile Software Development, on the one hand, there are a
plethora of SLRs (e.g., [64], [115], [135]), Systematic Mapping Studies (e.g., [35])
and even Tertiary Studies (e.g., [59]) that portray how academia has studied Ag-
ile Software Development. In addition, several studies report on the benefits of
Agile and XP practices in industrial settings (e.g., [65], [38], and [1]). Likewise,
multiple studies address the potential benefits and drawbacks of Test-Driven
Development (TDD), with several experiments (e.g., [47], [134]), case studies
(e.g., [38]), and SLRs (e.g., [97])

Lean Software Development was popularized by Poppendieck [106] and has
been studied in an industrial setting [103], [105]. Several SLRs and Systematic
Mapping Studies report results on metrics related to Agile and Lean software
development and their relevance in the software industry [21], [41], [74].

3.3 Research Methodology

This article uses the SLR method, using Wohlin’s snowballing approach [140],
and a case study method following guidelines by Runeson et al. [114]. We focus
on the following research questions:

RQ1 How has prior literature described the principles and practices of software
craftsmanship?

RQ2 Which of the identified principles and practices can we see applied in a
real-life, commercial case study?

RQ3 What are the consequences of applying these principles and practices of
software craftsmanship?

We aim at answering RQ1 by performing an SLR. We aim at answering RQ2 by
collecting quantitative measures on the studied system and triangulating them
with interview findings with developers and the lead architect of the product.
RQ3 is answered by extracting and synthesizing the literature review results
and combining them with case study findings.

3.3 Research Methodology 29

3.3.1 Systematic Literature Review Methodology and Ex-
ecution

We conducted an SLR using the snowballing method described by Wohlin [140].
We used a hybrid search strategy by combining the database search with itera-
tive citations and references analysis [96]. Forward snowballing (citation anal-
ysis) greatly improves the precision, while backward snowballing (references
analysis) greatly improves the recall of literature reviews.

Start Set Identification

We performed a database search in Google Scholar in December 2018, using the
terms “software craft” OR “software craftsmanship” OR “software craftsman”
OR “software craftsmen” OR “software craftsperson.” We got 980 results that
were analyzed by two authors, based on the following criteria:

1. Is the paper published in an English-language journal, conference, or work-
shop proceedings, indexed by Google Scholar?
This step excludes books, book reviews, and thesis works, including M.Sc.
and Ph.D. theses.

2. Does the paper describe themes, practices, or otherwise conceptualize soft-
ware craftsmanship?
This step excludes papers only referring to other works, such as [87], with-
out providing any additional detail.

Criterion 1 excluded 522 papers and criterion 2 excluded 346, resulting in
112 papers, which were screened as potential seeds. Based on analysis of the
title and abstract, we selected papers discussing various aspects of software
craftsmanship, which resulted in four initial seed papers, denoted P1, P2, P3,
and P4. According to Wohlin [140], the start-set should include papers from
different publishers, authors, communities and should not be too small. Since
diversity and scale are important for snowballing, we decided to broaden our
set with relevant papers identified from our experience and recommendations,
not only the database search. After some initial deliberation and analysis, we
decided to add another five seed papers, denoted P5, P6, P7, P8, and P9.
We also decided to drop our initial requirement to include only peer-reviewed
papers since some of the included papers are magazines. At least two researchers
applied the inclusion and exclusion criteria. When two reviewers had an initial
disagreement, the conflicts were resolved by consensus.

30 Towards an Anatomy of Software Craftsmanship

Snowballing iterations

We performed four snowballing iterations summarized in Table 3.1 and stopped
when we found no new relevant papers, applying the inclusion and exclusion
criteria following the process described in Section 3.3.1. The full results of the
SLR are available here5.

Since the Software Craftsmanship concept comes both from the Craftsman-
ship Manifesto and seminal books, we extended the literature review with the
final forward snowballing iteration focusing on books. In other words, we fol-
lowed the references of the found papers and created a pool of books ready for
analysis by partially following the guidelines for Multivocal Literature Reviews
presented in [51]. This resulted in 146 books. As in the protocol we followed for
“white” literature, two researchers applied the inclusion and exclusion criteria,
and the conflicts were resolved by consensus. We divided the books between
three of the researchers by letting each researcher analyse two-thirds of the
books, making sure each book was reviewed twice. After applying the second
exclusion criterion (2), we discarded a total of 135 books. The pairwise Cohen’s
Kappa results are 1.0, 0.59, and 0.48, which is less than the recommended crite-
ria of 0.7. All three researchers discussed the seven books where disagreements
were identified, and four of these were included in the final result after consen-
sus had been reached. We decided not to iterate on other works citing included
books since the number of citations for the included books is extremely high,
and the main references from the paper-set had already been included. Section
3.4 contains the full results of the SLR.

3.3.2 Case Study Methodology
The goal of the case study is to analyze different craftsmanship practices followed
in developing a product over seven years.

The Case

The product studied in the case study is a FinTech global product that enables
access to financial services via mobile phones and the Internet. The system is
a high-availability, transaction-intensive product, with incoming and outgoing
interfaces, a database, and scheduled tasks such as sending notifications. As it
operates in the financial sector, security plays a central role in development.

5https://tinyurl.com/Sundelin-SWC-SLR

3.3 Research Methodology 31

Table 3.1: Snowballing Iteration Statistics and Results

Iteration Number of citations and ref-
erences screened

Included papers and books

Seed-1 P1 [132], P2 [99], P3 [112], P4 [81]
Seed-2 P5 [82], P6 [63], P7 [27], P8 [108],

P9 [84]
Iteration 1 213 references and 186 cita-

tions
P10 [102]

Iteration 2 30 references and 1 citation P11 [79], P12 [133], P13 [101],
P14 [13]

Iteration 3 217 references and 517 cita-
tions

P15 [119], P16 [10], P17 [80]

Iteration 4 18 references and 78 citations P18 [139]
Ref. Books 146 referenced books B1 [17], B2 [91], B3 [75], B4 [87]

B5 [121], B6 [60], B7 [120], B8 [88]
B9 [83], B10 [56], B11 [138]

Our investigation focuses on the financial core, containing the core business
logic, such as financial transaction management, and associated user interfaces.
A deployed product also contains other components (both third-party hardware
and software) and customer adaptations, which are out of our analysis scope.
All other components use the services of the core to perform financial tasks. The
system is built in Java, using EJB 36 patterns, and uses a custom framework
for deployment.

2009 2010 2011 2012 2013 2014 2015 2016 years

St
ar
t-
up

ph
as
e

(n
o
qu
an
t.
da
ta
)

In
te
rn
al
liv
e

cu
st
om

er

St
ra
te
gy

ch
an
ge

Live operation

More deployments

Figure 3.1: Timeline of major events in the studied system.

6http://download.oracle.com/otndocs/jcp/ejb-3.1-pfd-oth-JSpec

32 Towards an Anatomy of Software Craftsmanship

Figure 3.1 depicts the timeline of the studied period, together with major
events in the life cycle of the product. The first line of code was written in
September 2009, and the first live demo for external parties was held in late
October 2009. During 2011, Ericsson’s strategy was to provide the solution
as a service for end-users, and the system was deployed and taken into live
operation in this manner. Following a business strategy change, the company
decided to decommission the service and adopt a product-line approach. In late
2013 the first installation of the product went into operation at a customer site.
Subsequently, the roll-outs continued, and the product was serving several tens
of millions of end-users in more than 15 deployments worldwide during 2016.

As of December 2010, there are quantitative data available in the Git Version
Control System. Before that, the project used ClearCase, a licensed product
whose storage is unavailable for analysis.

The initial phase of the product (between 2009 and 2011) can be character-
ized as “the startup phase,” with frequent changes of direction and no market
deployment. Between 2011 and 2013, the internal customer provided feedback
on the operation and deployment of the system. When the first external cus-
tomer contract was signed in 2013, and the first system was taken live later
that year, the direction became more stable, with increasing inflow of customer
requirements.

The product used one primary and one supporting development site for most
of the studied period. From mid-2011 until mid-2012, one development team
was based in China. Following a change in product strategy, in mid-2013, two
development teams from India were on-boarded instead, and this continued until
the end of the studied period.

During the whole studied period, ending in December 2016, the product
has been developed in an agile manner, first using two-week and later three-
week sprints, heavily inspired by the craftsmanship principles and practices, as
discussed in Section 3.5.

During the studied period, 155 individual developers have contributed to
the studied system (measured via the Git Author tag). The first author of this
article was a developer from the project start until October 2016. Table 3.2
contains the distribution of developers per quarter and quarters per developer.
On average, 48.9 developers contributed to the code base each quarter. The
peak of activity was reached in Q2 2016 with 91 contributors. In total, 24
quarters were studied, and in 75% of these, more than 36 authors contributed
code. This clearly shows that the product is larger than what a single agile team
can accommodate, requiring inter-team collaboration and communication.

3.3 Research Methodology 33

Table 3.2: Quarterly Developer Statistics

Metric x̄ σ Q25% Q50% Q75% Min Max
Developers per quarter 48.9 17.7 36 48 53 25 (Q1 2011) 91 (Q2 2016)
Quarters per developer 7.6 6.5 3 5 11 1 (14 dev) 24 (5 dev)

On average, each developer stayed almost two years (7.6 quarters) in the
product, though 50% of the total 155 authors contributed five quarters or less,
and 25% contributed three quarters or less. This turnover data for the studied
period show similar characteristics as the cases reported in previous research
in the area [22]. The distribution is slightly right-skewed, as indicated by the
minimum and maximum values, with five authors contributing during all 24
studied quarters and 14 authors contributing during a single quarter.

Although most contributors have been software developers, more persons
and roles such as requirement engineers, system testers, product-, project- and
line managers have contributed to the product. These roles are not studied in
this article.

Data Collection

We used two data collection methods. We gathered qualitative data through
interviews with different roles involved in developing the product at different
points. We also gathered data using archival analysis, using different artifacts
(e.g., Version Control Systems, documentation, requirements, and defect re-
ports) to measure the potential effects of craftsmanship practices on the prod-
uct and the development process. We interviewed six participants for this case
study, two female and four male subjects. Two of the interviewees worked in
India, and four worked at the primary development site. Table 3.3 details the
participants’ background, as well as the legend used in citations and tables.

The interviews were organized as semi-structured interviews, using the in-
terview instrument to structure the discussion. The interview protocol, which is
publicly available here7, was built and reviewed by the researchers and adapted
as the interviews progressed to focus more on each interviewee’s areas of exper-
tise. At least two researchers conducted all the interviews, intervened in the
discussion at will, clarifying statements, and introducing new topics and areas.
All the interviews were audio-recorded and transcribed before analysis.

7https://tinyurl.com/Sundelin-SWC-Interview

34 Towards an Anatomy of Software Craftsmanship

Table 3.3: Case Study Interviewee Background, Ordered by Industry Experience

Legend Description Experience
SwArch1 Lead Architect 20+ years in industry, 8 years in the product, starting 2009
Test2 Test-focused developer and Scrum master ≈20 years in industry, 8 years in the product, starting 2009
Test1 Test-focused developer and Scrum master ≈15 years in industry, 2 years in the product, starting 2015
Dev2 Developer ≈15 years in industry, 4 years in the product, starting 2013
Dev1 Developer ≈10 years in industry, 4 years in the product, starting 2013
Dev3 Developer and Scrum master ≈10 years in industry, 5 years in the product, starting 2012

3.3.3 Consolidated Data Analysis: Building the Anatomy

In this subsection, we describe how we analyzed both the SLR and case study
results.

The interview transcripts and the SLR results were analyzed using The-
matic Analysis (TA), following the guidelines by Braun and Clarke [14]. We
opted for TA since we were not exploring a completely alien phenomenon (i.e.,
Software Craftsmanship). Therefore there is no need to build an entirely new
theory that emerges directly from the data, as is one of the main strengths
of Grounded Theory [53], that in general is better suited to answer broader
questions, such as “what is going on there?” [127]. TA is a robust and system-
atic framework for coding and analyzing qualitative data, identifying patterns
across datasets in relation to research questions [15]. TA is also best suited
when most of the collected data belong to a precise context, which then will
move to generalizations and finally will allow building theories [3]. We carried
out a theoretical or deductive approach for Thematic Analysis[14] by starting
with a theory (a set of codes and themes), updating this as new data emerged.

Figure 3.2 summarizes the process for building the Anatomy of Software
Craftsmanship. We first generated the initial set of codes (i.e., craftsman-
ship principles and practices), represented in the form of a mind-map (i.e., the
Anatomy). This first set of codes was built based on the Software Craftsmanship
Manifesto and themes from books, as indicated in Table 3.5. The first author
then discussed the initial anatomy with the other authors in devil’s-advocacy-
type sessions.

Then the papers and the books included from the SLR were analyzed and
coded, searching and reviewing the emerging codes and themes. When coding
the books included as gray literature, two researchers read each book. Once
the coding was finished, the two researchers met to discuss the codes found and
went through the coding conflicts, which were solved by consensus.

3.3 Research Methodology 35

The next step was coding the interview transcripts. The first author per-
formed the initial In-Vivo coding [116] of all six interviews. Next, the second and
third authors independently coded three transcripts each, assuring that at least
two independent researchers coded each interview, prioritizing the interviews in
which each researcher was present. Once coding was finished, the researchers
met to discuss the potential coding conflicts, which were resolved by consensus.
The coding was done using the corresponding version of the Anatomy with the
codes. During the coding process, codes were merged, renamed, and new codes
and themes were identified and added to the Anatomy, as suggested in Fig-
ure 3.2. This process triggered the need to review the already coded materials
to identify potential instances of the new codes and themes in the data.

1st Version of the Anatomy Final version of the Anatomy

Systematic literature review
including grey literature

Interview transcriptsKnowledge from books

Timeline

Thematic
Analysis

Figure 3.2: Process for Building the Anatomy of Software Craftsmanship.

Taking the “Requirements” concept as an example to illustrate the process:

1. The first author of this article had experience from the case study, as
well as noting the importance of localized customers, as stated in several
of the reviewed books, see Table 3.5. Based on this, he initially decided
on the code On-site customer, as it is a concept from XP [7] that aligns
well with the requirements process of the case study. After discussions
with the additional authors, this code was used to explore the SLR results
and to guide the interviews. However, neither the coding system nor the
tentative map was shown to the interviewees before the interview.

36 Towards an Anatomy of Software Craftsmanship

2. Both books B2 [91] and B8 [88] mention the importance of communication
between development teams and requirement owners, indicating that the
requirements concept should be somewhere near the Feedback theme.

3. Furthermore, while conducting interviews, evidence was made more ap-
parent that requirements were written in cooperation between the devel-
opers and the On-site-customer, though the case study used the Scrum
term “Product Owner” (PO). This was mentioned by several intervie-
wees, for example, “We had our requirements in [the wiki-based require-
ment tool]. And the PO owned them—or the team—sometimes the team
helped formulate them. But you walked through them [with the PO]. In
[a different product], where I am now, it is completely different. . . ”(Test2)

4. Two other interviewees (Dev1, Test1) also indicated that the require-
ments were collaborative, mentioning the importance of looking “top-
down” while simultaneously keeping a “bottom-up” perspective. This was
also found in seven books and two papers in the literature, see Table 3.11
for details. In B2 [91], McBreen cites a study by Curtis, Krasner, and
Iscoe, where this was stated as “Characteristically, customers also under-
went a learning process as the project team explained the implications of
their requirements. This learning process was a major source of require-
ments fluctuation.” [33]

5. The importance of Accessible requirements was also made clearer during
the interviews. Having a clear, accessible requirement base was important
for being able to work in parallel: “A strength in [the case study project]
was that we could start testing in parallel with development. And we
had clear requirements in one place [the wiki-based requirement track-
ing tool]. Based on this, the developers did their analysis, and testers
did theirs in parallel. So we could write our acceptance test cases while
development was ongoing.”(Test2). Another interviewee supported this
claim, and eventually, the Accessible requirement code was also found in
book B2 [91] and papers P3 [112] and P9 [84].

6. Based on these data points, we decided to add the F1.1.2 Collaborative
and F1.1.1 Accessible practices to the F1.1 Requirements practice, con-
nected to the original On-site-customer principle. The decision to keep
the whole sub-tree in the F Feedback theme was confirmed while analyz-
ing additional data, such as when an interviewee discusses interactions
between the requirements owner and the development team: “I would

3.4 Systematic Literature Review Results 37

say we talk to [the requirements owner] every day, almost. . . Or, maybe
at least for half an hour every other day. . . It’s quite often we encounter
things, in code and so on, that is not really how the requirement was
imagined. . . Then you have to discuss that.”(Test1). In total, four inter-
viewees, three books, and three papers confirmed the importance of F2
Short feedback loops between requirements engineers (regardless of title or
term used), the development team, and the verification engineers.

7. While this article was in revision, a reviewer rightly pointed out that our
so-called “On-site customers” were not really customers, but mere proxies
for real, paying customers. Therefore, we decided to rename the principle
to F1 On-site customer (proxies), indicating that sometimes you have to
work with proxies for real customers (or end-users).

To increase validity and get feedback on our work, we shared the interview
transcripts with the interviewees to ensure that we properly captured their opin-
ions. We also presented an intermediate version of the craftsmanship map for
company employees, including those currently working with the product. This
provided valuable, though unstructured, feedback, which validated our struc-
ture.

We used statistical methods such as descriptive statistics and graphical rep-
resentations to analyze and describe the case study’s quantitative data.

3.4 Systematic Literature Review Results
In this section, we summarize the main findings of the SLR. Table 3.4 outlines
the results of the analysis of papers P1 to P18. Only 6 out of 18 papers can be
considered empirical studies. Opinion papers and personal experience papers
dominate the non-empirical studies and receive rigor scores between 0 and 1 and
relevance scores between 1 and 2, making these papers partly relevant for our
work. We used rigor and relevance criteria proposed by Ivarsson and Gorschek
[62]. Rigor can have scores from 0 to 3 and is related to describing the context
(maximum 1 point), study design (maximum 1 point), and validity (maximum
1 point). Relevance can have scores from 0 to 4, considering industrial partici-
pants (max 1 point), industrial context (maximum 1 point), realistic size of the
study (maximum 1 point), and the usage of research methods that facilitates
investigating real situations (maximum 1 point).

Among the non-empirical papers, two papers view craftsmanship from the
perspective of the history of software engineering. Among them, P18 gives a

38 Towards an Anatomy of Software Craftsmanship

Table 3.4: Papers Resulting from the Systematic Literature Review

Paper
[ref]

Found
in

Refs Cited Rigor Rele-
vance

Venue Year Empirical Main contribution

P1 [132] Seed1 P10 0 0 Journal 2003 No: vision pa-
per

Craft metaphor for
software creation

P2 [99] Seed1 4 3 Journal 2013 Yes: qual-
itative and
quantitative,
longitudinal
study

Craftsmanship forums
and chats as a part of
community of practice

P3 [112] Seed1 3 3 Conf. 2013 Yes: question-
naire and focus
groups

Community of practice
as a part of software
craftsmanship

P4 [81] Seed1 2 3 Conf. 2014 Yes: qualitative
interviews and
focus groups

Different conceptu-
alizations of craft in
building software

P5 [82] Seed2 1 4 Work-
shop

2016 Yes: experience
report

Analyzes software
craftsmanship values
in a Scrum project

P6 [63] Seed2 0 2 Magazine 2014 No: opinion pa-
per and anecdo-
tal evidence

Engineering is craft
supported by a theory

P7 [27] Seed2 0 2 Non-
academic
confer-
ence

1994 No: experi-
ence report
mostly based
on anecdotal
evidence

Stresses the impor-
tance of craftsmanship

P8 [108] Seed2 0 2 Non-
academic
journal

2003 No: opinion pa-
per

Discusses general
craftsmanship and
software craftsman-
ship models

P9 [84] Seed2 1 2 Work-
shop

2008 No: personal ex-
perience

Focus more on agile
than craftsmanship

P10 [102]Iter1 P11,
P12,
P13,
P14

P1 2 3 Journal 2015 Yes: qualitative
and quantitative
surveys

Community of practice
and software design

P11 [79] Iter2 P10,
P16

1 2 Journal 2013 No: theoretical Epistemology of craft
in modern program-
ming

P12 [133]Iter2 P10 0 1 Non-
academic
journal

2010 No: opinion pa-
per

Katas as a part of
craftsmanship

P13 [101]Iter2 P15 P10 2 2 Magazine 2014 Yes: experiment
using katas

Katas as a way of
learning and personal
improvement

P14 [13] Iter2 P10,
P16,
P17

0 1 Conf. 2006 No: opinion pa-
per

The birth of the craft-
ing paradigm preced-
ing SE in the 1960s

P15 [119]Iter3 P13 1 2 Conf. 2012 No: personal ex-
perience of the
course instruc-
tor

Courses that involve
craftsmanship prac-
tices

P16 [10] Iter3 P11,
P14,
P17

P18 0 1 Conf. 2016 No: observa-
tions of the
authors

Professional practice is
craftswork

P17 [80] Iter3 P14 P16 1 1 Work-
shop

2012 No: previous
version of P11

Previous version of
P11

P18 [139]Iter4 P16 0 1 Journal 2008 No: personal
opinion paper

Mentions craftsman-
ship in the history of
SE

3.4 Systematic Literature Review Results 39

brief history of Software Engineering, referring to Dijkstra declaring program-
ming to be a discipline rather than a craft. Paper P14 also looks into the history
of Software Engineering and uses the term “software crafting” to describe the
(lack of stringent) processes for programmers during the 1960s.

On the philosophical stance, papers P11 and P17 discuss the theoretical
underpinnings of the epistemology of craft in modern programming. Paper P1
provides a similar discussion, advocating that software methods should find
ways of incorporating vernacularism and objects to a strictly rational software
design process.

Six non-empirical papers present opinions, visions, or experiences. Among
these, paper P6 argues that engineering is a craft supported by theory, while
paper P16 argues that professional practice is craftwork. Paper P8 discusses the
general craftsmanship model and the software craftsmanship model. Paper P7
highlights the importance of craftsmanship. Paper P9 focuses on the relation
between agile and craftsmanship, and paper P12 brings opinions about using
katas. Paper P15 summarizes experiences holding a course involving craftsman-
ship principles.

None of the six empirical papers takes a holistic view of software craftsman-
ship. Instead, they focus on practices (e.g., a community of practice for papers
P3 and P10; craftsmanship forums and chats for paper P2; using katas to learn
and improve for paper P13).

Empirical papers P4 and P5 are the closest to this work. Paper P4 em-
pirically derives different conceptualizations of craft in building software, using
a sample of 12 participants, whose subjective opinions were collected via in-
terviews and a focus group. Paper P5 attempts to outline the craftsmanship
practices based on the experiences from a project run with Scrum. The paper
discusses steadily adding value vs. responding to change, a community of pro-
fessionals, customer collaboration, and productive collaboration. Despite being
highly relevant, paper P5 appears to be an experience report from a project man-
ager’s point of view, providing quantitative analysis of technical debt (number
of lines removed over time) and velocity in backlog hours versus tool estimated
technical debt. However, the paper lacks systematic connection between the
presented experiences and evidence. It appears that it is one person’s experi-
ence that summarizes what the team has done rather than interviews with team
members triangulated with quantitative data analysis.

Table 3.5 contains the books found in the SLR, with the books used by the
first author to build the initial anatomy map marked in boldface. Many books
(e.g., B1, B4, B8, and B9) describe personal experiences from skilled software
development professionals. Others, such as books B3 and B11, detail process

40 Towards an Anatomy of Software Craftsmanship

Table 3.5: Books Resulting from the SLR. Boldface Books Influenced Initial
Anatomy.

Book [ref] Cited Year Main contribution
B1 [17] P14 1975, Originally published in 1975, the referenced version was published for the

P16 revised twentieth anniversary and also includes subsequent essays on software
1995 engineering. Details experiences from the development of the

IBM System/360 in the 1960s, where the author was the project lead.
B2 [91] P1 2002 Argues that craftsmanship is a better metaphor for software development

P8 than software engineering, which is described as focusing on
multi-year, large-scale, low-skilled-developer projects.

B3 [75] P3 2008 While focusing on patterns for using Scrum and Lean practices
in large-scale system development, the authors also illustrate
the importance of skilled developers that practice their craft,
mentoring less-skilled peers.

B4 [87] P6 2008 Personal experiences from the authors are combined with a set
P11 of concrete rules, exemplified in Java, to create a catalog
P17 of smells and heuristics, including remedies.

B5 [121] P4 2008 Philosophical book, arguing that Linux and other open-source
projects embody the spirit of craftsmen, as epitomized by
the hymn of Hephaestus.

B6 [60] P13 2009 Originally sourced from a wiki, this book describes Software
P15 Craftsmanship as a pattern language, centered around learning

themes such as “emptying the cup”, “walking the long road”,
“accurate self-assessment”, “perpetual learning” and
“construct your curriculum”.

B7 [120] P11 2009 Contains 15 interviews the author conducted in 2008 with leading
developers from the 1960s until today. Of the 11 interviewees
asked, eight would identify software development as a “craft”
Other opinions voiced were: “art”, “mathematics”, “science”,
“engineering” or “a style of writing”.

B8 [88] P6 2011 Using the author’s experience as an example, describes rules
and principles for professionalism in committing to a task,
developing, testing, and dealing with teams and people under
delivery pressure. Advocates for practicing and mentoring as
tools to reach higher productivity.

B9 [83] P6 2014 Wide treatment of Software Craftsmanship, ranging from personal
experiences, professional attitude and technical practices to how
to interview for recruitment and foster a culture of learning.

B10 [56] P10 2014 Describes best practices and lessons learned while teaching the
four rules of simple design [43] via code kata exercises for various
groups of people over the course of five years.

B11 [138] P6 2015 Blends the two fields of Agile software development and Human
Performance Technology, a field closely related to human resources
and learning professionals, described in 1978 by Gilbert[52]

3.5 The Anatomy of Software Craftsmanship 41

patterns for large-scale organizations, whereas book B7 contains transcribed
semi-structured interviews with 15 senior developers, focusing on their personal
development experiences and opinions. Books B2 and B5 are more philosophi-
cally inclined, and book B10 describes experiences from teaching XP and pair
programming using deliberate practice.

To the best of our knowledge, this article is the first attempt to empirically
derive the anatomy of software craftsmanship based on a more encompassing
view of the seminal books, supplemented by academic literature in the area,
and buttressed by insights from an in-situ longitudinal industry case study.

3.5 The Anatomy of Software Craftsmanship
In this section, we present the concept map, synthesized from the analysis of the
case study findings and the SLR results. Figure 3.3 depicts four themes with
associated principles and practices as interconnected nodes.

The A Value-focused architecture theme has three principles (A1 to A3)
with ten associated practices (A1.1 to A3.4). The D Iterative design, de-
velopment, and verification theme has three principles (D1 to D3) with ten
associated practices (D1.1 to D3.2). The C Shared professional culture theme
has six principles (C1 to C6) with 18 associated practices (C1.1 to C6.3). The
F Feedback theme has five principles (F1 to F5), with nine associated practices
(F1.1 to F5.2).

Some practices are connected to more than one principle, indicated in the fig-
ure via interconnected edges. Some practices are hierarchical. For instance, the
practice F1.1 Requirements contains the sub-practices F1.1.1 Accessible and
F1.1.2 Collaborative, indicating that the requirements gathering and clarifica-
tion process was performed in collaboration between the requirements engineer
(“On-site customer”) and the development team.

The principles are presented together with the supporting empirical findings
found in the literature and the case study.

3.5.1 A Value-focused architecture
The software craftsmanship manifesto states as a principle: “Not only respond-
ing to change, but also steadily adding value,” and a well-crafted system should
have a software architecture that enables this goal.

The three principles and ten practices related to value-focused architecture
are listed with references in Table 3.6. To enable the value-focused architecture,

42 Towards an Anatomy of Software Craftsmanship

F Feedback

F1 On-site
customer
(proxies)

F1.1 Re-
quirements

F1.1.1
Acces-
sible

F1.1.2
Collab-
orativeF1.2

Frequent
demos

F2 Short
feedback

loops

F3 Review

F3.1 Team
review

F3.2
Static
review
tools

F3.3
Solution
review

F4 Learning
from feedback

F5 Con-
tinuous

integration
and tests

F5.1
Frequent
release

candidates

F5.2 Re-
producible

releases

A Value-focused
architecture

A1 Par-
ticipating
Software

Architects

A1.1
Passionate

A1.2
Skilled

core
A1.3 Em-
powerment

A1.4
Architect

also
implements

A1.4.1
Working
example

A2 Encap-
sulation

Separation
of concerns

A2.1
Isolated &
layered ar-
chitecture

A3 Clean,
minimal-
istic code

A3.1 Min-
imalistic

frameworks

A3.2
Judicious

use of 3pps

A3.3
Common

application
patterns

A3.4
Refac-
toring

D Iterative de-
sign, development
and verification

D1 In-
cremental

development

D1.1
Growing

value-
added
func-

tionality

D1.2
Team tests
what team
develops

D2 Testing
pyramid,
layered
testing

D2.1
Stable, in-
dependent

tests

D2.2
Compre-
hensive

functional
tests

D2.3 Test-
focused
devel-

opment

D2.3.1
Pairing

D2.3.2
Test-
Driven
Dev.

D2.4
Expressive

tests,
simple

structure

D3 Design
documen-

tation

D3.1
Executable

(tests
as doc)

D3.2 Col-
laborative

(wiki)

C Shared profes-
sional culture

C1 Standard
development
environment

C1.1
Common
code style

C2 Common
professional

culture

C2.1
Caring

C2.2
Clear roles,

respon-
sibilities

C2.3
Definition
of Done

C2.4 Pride

C2.5
Collective
ownership

C3 Cross-
team com-
munication

C3.1
Cross-team

forums

C4 Visibility
Transparency

C4.1
Visible
backlog

C4.1.1
Technical

debt
visible,
acted on

C4.1.2
Pull-
based

backlog

C4.2
Visible
status

C4.2.1
Infor-
mation

radiators

C4.3
Visible
release
plan

C5 Ac-
countability

C5.1
Humility

C5.2
Reputation

C6 Culture
of learning

C6.1
Reflecting

C6.2 Kata
exercises

C6.3
Mentoring

Figure 3.3: The anatomy of Software Craftsmanship.

3.5 The Anatomy of Software Craftsmanship 43

Table 3.6: References to A Value-focused architecture

Id Name Books Literature Qualitative
A1 Participating Software Architects B1, B2, B6 SwArch1, Dev1, Dev2, Dev3, Test1
A1.1 Passionate B2, B3, B6, B7, B8, P1, P8 SwArch1, Dev3, Test2

B9
A1.2 Skilled core B1, B2, B3, B6, B7 P1, P8, P11, P15, SwArch1, Dev1, Dev2, Dev3, Test2

P17
A1.3 Empowerment B1, B2, B3, B9 P3 Dev3, Test1, Test2
A1.4 An architect also implements B3, B9 P7 SwArch1, Dev3, Test1, Test2
A1.4.1 Working Example P5, P7 Dev2, Dev3, Test2
A2 Encapsulation & separation of concerns B1, B2, B4, B7, B8 P11, P13 SwArch1

B10
A2.1 Isolated and layered architecture B2, B4, B6, B7, B10 P3, P11, P18 SwArch1, Test1
A3 Clean, minimalistic code B1, B2, B3, B4, P5, P11, P15, P17 SwArch1, Dev3, Test2

B7, B9, B10, B11
A3.1 Minimalistic frameworks B2, B4, B7 P4, P8, P11 SwArch1, Dev1, Dev2
A3.2 Judicious use of third-party-products B2 SwArch1
A3.3 Common application patterns B3, B7, B10 SwArch1, Dev1, Dev2, Dev3, Test2
A3.4 Refactoring B1, B3, B4, B6, B7, P3 SwArch1, Dev1, Dev2, Dev3, Test1,

B8, B9, B10, B11 Test2

software architects have to participate in guiding the team into a modular and
layered architecture, where changes do not ripple across subsystems, and code
is kept clean and as simple as possible through refactoring. The first rule of
refactoring [46] is that there must be sufficient test coverage before it occurs, so
the architecture should also enable the development of a comprehensive, layered
test base.

A1 Participating Software Architects

• Literature: Brooks, in B1 mentions the chief programmer as a role
which today could be called lead software architect, and discusses the
benefits of conceptual integrity, by using a “small architecture team.”
Books B2, B6, and B8 also discuss the importance of architects that
participate in the end-to-end solution, for instance, by specifying and
giving examples of integration tests. Looking outside the SLR scope,
Hunt and Thomas [61] calls the role “technical head,” tending to the
big picture, and Martin [86] states that software architects need to
participate in the development to spot problems and guide directions.
Books B1, B3 and paper P3 refer to team empowerment in the con-
text of cross-functional teams [92], while book B9 states that an em-
powered a team of craftsmen can be the difference between project
success or failure. Book B2 states that users should be empowered to
interact with developers, who know how to use this to deliver robust
applications.

44 Towards an Anatomy of Software Craftsmanship

Paper P7 mentions the constant attention to architectural issues and
lead developers that participate in the product from early prototypes
to delivery. Paper P5 states that their product used an initial domain
model and an early definition of basic architectural mechanisms.
The importance of skills and passion for the craft is discussed in
seven books and eight papers, as depicted in Table 3.6, e.g., paper P2
elaborates on the role of a passionate leader in increasing engagement.

• Empirical findings: The studied system had the same chief soft-
ware architect, who implemented a lot of code, including a minimal
container framework, based on partial support of EJB 3 standards.
“I tried not to interfere too much with the teams. Instead, I tried
to ensure that the platform they were building on was stable and
good enough, so whatever they did, they will most likely get it right.
Because that reduces the load on me and my team.”(SwArch1)
As the product grew beyond two teams, one senior developer from
each team was designated “Team Architect” (TA), with the intent
to spread the knowledge from the chief software architect. This is
further discussed in item C3, and similar to the one reported in [16].
Teams were empowered to come up with their own solutions and to
improve on existing solutions. The TA group also had some votes
in the resource planning, for instance, regarding “onboarding” pro-
cedures for the outsourced teams, as mentioned in item C2.
Several interviewees mention the passion and the pride they took in
the product, e.g. “We cared a lot for our product. Some people
ended up in different areas. . . Some features were like one’s nursing
child.”(Test2)
Team architects were expected to both participate in the team’s daily
work and mentor them into a coherent way of working: “[Our team
was formed by] mixed newly graduates and senior developers. And
our TA, I guess he preached a lot. He has gotten me into Domain-
Driven Design. During my education years, I was using strings ev-
erywhere. So, he really opened my eyes to the benefits of DDD. And
now, I try to spread the word [to my new team].”(Dev3)
There are also contradictory views that the product was lacking
a communicated architectural vision: “My dream architect should
know the code, know how we want it to work, and also say ‘Now
when you are into this part, I want you to think about this also,

3.5 The Anatomy of Software Craftsmanship 45

improving, preparing for future. . . ’ And also being able to delegate
this.”(Test1)

• Analysis: Striking the correct balance between participating and
empowering is not trivial. While Bass et al. [6] do include “Im-
plementing the product” and “Testing the product” as two of the
ten technical duties of a software architect, they also list seven non-
technical duties, nine non-technical skills, and ten knowledge areas
that should be mastered.
In the studied case, the developers showed lots of passion for the
product and worked together towards the same goal. However, there
were still expressions that there was a lack of a communicated vision
and a desire for tasks and responsibilities to be delegated more.

A2 Encapsulation, Separation of concerns

• Literature: Encapsulation is the materialization of one of the most
traditional Software Engineering principles: “the separation of con-
cerns” [36]. While developing a complex system, there is a need to
develop and evolve different parts of the system independently [6].
The layered architectural pattern is the most widely spread prac-
tice for architectural subdivision [6], [18]. The pattern segments the
software systems in a way that enables modules to evolve and be
developed separately so that each module has only one main reason
to change.
Five books in the SLR findings (B2, B4, B6, B7, B8, and B10) advo-
cate proper encapsulation, loose coupling, and isolation of changes.
Book B2 explicitly mentions that designing for testability is impor-
tant because it discourages coupling and encourages cohesive module
design. Outside the SLR findings, Richards et al. state that layered
architectures increase the efficiency of testing [110]. Papers P3 and
P11 state simplicity as a key trait of craftsmanship.

• Empirical findings: One of the first architectural decisions was to
rely on an EJB 3-alike application framework, developed internally,
to solve product requirements regarding installation, upgrades, and
configuration. The framework is further discussed in item A3.
The architecture enforced business logic to be split into interfaces
and implementations and used dependency injection, using naming
patterns to reduce the need for boiler-plate configuration. Inter-

46 Towards an Anatomy of Software Craftsmanship

process communication initially used serialized Java objects, though
this was later replaced with an XML-based interface, supported by
a schema definition language. This change made it easier to enforce
backward compatibility across different protocol versions by defining
a published protocol that was shared with external parties.

Operations

<<layer>>

Services

<<layer>>

Managers

<<layer>>

DAO

<<layer>>

Protocol 1.0
<<layer>>

Protocol 1.1
<<layer>>

Protocol 1.2
<<layer>>

Operation Managers
<<layer>>

<<Allowed to use>> <<Allowed to use>> <<Allowed to use>>

<<Allowed to use>>

<<Allowed to use>>

Services

<<layer>>

Managers

<<layer>>

DAO

<<layer>>

DAO

<<layer>>

<<Allowed to use>>

EJB 3 Application Server

<<layer>>

DAO

<<layer>>

<<Allowed to use>>

EJB 3 Application Server

<<layer>>

<<Allowed to use>>

<<Allowed to use>>

Services

<<layer>>

Managers

<<layer>>

DAO

<<layer>>

<<Allowed to use>>

<<Allowed to use>>

Services

<<layer>>

Managers

<<layer>>

DAO

<<layer>>

<<Allowed to use>>

<<Allowed to use>>

(a) (b)

Figure 3.4: Layered view of the Initial architecture (a) and Layered view of the
Architecture after separating protocols from business logic (b).

Figure 3.4 (a) depicts the initial layered architecture using UML8

stereotypes packages as layers and stereotyped allowed-to-use UML
dependencies, as suggested in [23]. The application server is rep-
resented as a bottom layer in this figure, although it also supports
all layers with cross-cutting concerns, such as transactions, security,
and logging. The Data Access Objects (DAO) encapsulate the
access logic to the database, and upper layers add business logic and
protocol support.
When faced with the problem of supporting clients using earlier pro-
tocol versions, the suggested solution was to add another layer in the
architecture, as depicted in Figure 3.4 (b). The old “Operations”

8http://www.uml.org

3.5 The Anatomy of Software Craftsmanship 47

layer was split in two, where the new “Operations Manager” layer
contained code common to the different versions of each operation,
and the protocol version layer converted between the specific protocol
versions and the operations layer.
The lead system architect had strong opinions about the architecture:
“If you look at each service, it has a normal, layered architecture,
because everything else is wrong.”(SwArch1)
He also discussed the architecture’s tree-based structure: “The de-
pendencies between the different services should look like a tree be-
cause it’s easier.”(SwArch1)
Particular care was taken to separate the architectural framework
from the business logic: “The bottom layer is, of course, just an
interface. You don’t rely on implementation because implementa-
tions can change. Then you build data access on top of that, then
on top of that you build managers and compound features, and so
on.”(SwArch1)
Architecture should simplify the creation of business value. This in-
cludes “making it easy to make the right decisions” such as container-
managed transactions and no explicit threading in business logic. It
also should simplify wanted non-functional aspects, such as simple
unit and integration testing, a defined data model management pol-
icy, absolute transaction security, and scaling. This was mentioned
as beneficial by three developers: “There was a good framework at
the product level, so you avoid doing things which are wrong.”(Dev2)
“[Application developers] should not need to know everything that is
behind the scenes. If they need to see it, then something is wrong.
Then we haven’t described a certain interface good enough.”(SwArch1)
The desire to simplify testing was also a driving factor: “. . . [listeners
are used as] reversed dependency injection, to inject behavior that is
needed for a particular customer. . . instead of trying to mush every-
thing into the same thing. Because that will take a longer time to
build, longer time to test. It will be a lot more complex to under-
stand, and it won’t be readable.”(SwArch1)
Layered architecture also supported business flexibility, allowing the
system to be customized for different installations while keeping a sta-
ble core. All deployments used the same core engine with customer-
specific adaptations added as optional packages.

48 Towards an Anatomy of Software Craftsmanship

• Analysis: Following software craftsmanship principles means focus-
ing on simplicity and testability when making architectural decisions.
Similarly, the developers were supported in their evolution of the
system through the hiding of unnecessary detail and having clear in-
terfaces to features, affecting both functional and quality attributes.
The architecture supported the smooth replacement of deployed code,
data models, and existing data, showing that there was a long-term
commitment to the product.

A3 Clean, “minimalistic” code

• Literature: As detailed in Table 3.6, eight of the studied books
describe the importance of keeping the code clean and the design
simple. Books B2, B4, and B7 advocate for minimalistic frameworks,
and B2 also mentions that care should be taken when choosing to
depend on other products. Both paper P12, and books B3, B7,
B10, [86] exemplify and describe the importance of using common
application patterns to communicate a design. However, in book B7,
one interviewee (Brendan Eich) concedes that he never bought the
Design Patterns book [50].
Nine books list refactoring as the key principle to achieve a clean
codebase, indicating that clean code typically arises from successive
refinements; it is not written directly. This is also stated by Hunt
and Thomas [61]. Paper P3 also mentions refactoring as a principle
of software craftsmanship. According to Fowler et al.[46], refactoring
involves “improving structure without affecting existing functional-
ity.”
Papers P5, P11, P15, and P17 mention clean code principles, using
exploratory programming and reflections to make the code cleaner.
Papers P4, P8, P11, P17, and P18 discuss how tools are important
to a craftsman and how to fight against homemade complexity, using
clean abstractions. Of particular importance is the ability to choose
the tool based on the task at hand.
Paper P12 mentions the importance of understanding the styles, id-
ioms, and patterns to be effective in a language and how the Lisp and
APL9 communities have championed the use of kata-like exercises to
spread common idioms for developers to be productive.

9https://en.wikipedia.org/wiki/APL_(programming_language)

3.5 The Anatomy of Software Craftsmanship 49

• Empirical findings: Both items A1 and A2 mention the in-house
developed architectural framework. In early 2011, the framework
consisted of 299 Java files totaling 19 kLOC production code, which
grew linearly (LOC p-value < 2 ∗ 10−16, R2 = 0.968) to 72 kLOC
Java production code in 1027 files in late 2016. This is clearly fewer
lines of code than, for example, the JBoss (also known as Wildfly10)
application server, which in its 7.0 release (July 2011) comprised
2886 Java files, totaling 205 kLOC, and the 10.1 release (Aug 2016)
comprised 7272 Java files, totaling 433 kLOC.
The importance of the minimal framework was stated by the chief
software architect: “. . . all these application servers, they have to
support 100% of the standard. The difference with us is that we
support the 5% that we need. . . System handling, such as installing,
upgrading, configuration, and so on is usually not covered in the
normal application servers.”(SwArch1) Another driving force of the
framework was the ease of development: “[The foundation] is built so
that it is easy to develop and debug, also locally, on your local laptop.
You have the basic services, cross-functional things with interceptors,
and so on. The application developer should be able to focus on the
value for the customer.”(SwArch1).
In the project, all interviewees mention refactoring as a used prac-
tice, though two say that it has to be “hidden” in the normal work
rather than being a planned activity. One interviewee stated that
refactorings larger than a week have to be planned, but smaller ones
take place “in the regular feature work.”
Several interviewees also mentioned the desire to refactor more, to
clean up more, but states that the balance tends to tilt towards fin-
ishing the current feature.
The project required developers to use strict commit messages, in-
cluding the reason for the change. Possible reasons for a change
included feature development, spontaneous or official (documented)
bug fixes, spontaneous refactorings, or build-related changes (e.g.,
preparing for releases or version changes). Table 3.7 shows the per-
centages of commits of the different sorts on the master branch, not
including back-ported commits to maintenance branches. The table
shows that the refactoring percentage of commits varied between 27%
and 7% each quarter, with both mean and median around 16%. The

10https://github.com/wildfly/wildfly

50 Towards an Anatomy of Software Craftsmanship

number of fault correction commits was lower, between 22.3% and
6.3%, with a mean of 12.6% and a median of 12.4%.

Table 3.7: Summary Statistics of the Proportion and Type of Main Branch
Commits per Quarter

Metric x̄ σ Q25% Q50% Q75% Min Max
Commits per quarter 3362 1189 2699 2994 3767 1090 (Q4-2016) 6361 (Q4-2015)
Feature development 52.8% 10.6% 46.1% 54.3% 59.2% 28.8% (Q1-2011) 74.5% (Q4-2015)
Refactorings 16.8% 4.5% 14.7% 16.6% 18.2% 7.7% (Q2-2014) 27.6% (Q1-2011)
Fault corrections 12.6% 3.3% 10.9% 12.4% 13.9% 6.3% (Q4-2015) 22.3% (Q4-2012)
Build related 16.8% 6.5% 12.9% 13.6% 19.0% 8.8% (Q4-2015) 30.6% (Q4-2016)
Unclassified 0.2% 0.1% 0.2% 0.2% 0.3% 0.1% (Q1-2013) 0.5% (Q4-2013)

There were concerted efforts to clean up the code in the project and
keep a consistent style throughout the codebase. As mentioned by
one of the respondents, the developers should “. . . strive to leave the
code a little cleaner than you found it.”(Dev3)
In the project, several interviewees mention the help they got from the
well-defined application patterns used in the product, including the
security patterns (encryption, key management, and fingerprinting).
“Identify the patterns. Actually, you have thousands of classes and
code, but you can summarize them into one or two use cases. You
need to have examples. . . .”(Dev1)

• Analysis: The results regarding refactoring, see Table 3.7, confirm
that the organization was consistent in refactoring and in keeping the
constant improvement culture. Both refactorings and spontaneous
bugfix percentages were higher at the beginning of the project when
the codebase was smaller and more volatile. However, the inter-
quartile range indicates that during 12 of the studied 24 quarters,
the ratio of spontaneous refactoring commits varied between one in
seven (≈ 14%) and two in eleven (≈ 18%).
Others have studied the effects and efficiency of refactoring opera-
tions embedded in feature development (e.g. [67], [143]).

Summary: The architecture of a system developed with craftsmanship in
mind should strive to maximize value-creation over a long-term commitment to
the product. The way to achieve this is to develop and frequently validate a
comprehensive regression test base, enabling developers to refactor the codebase
into a clean and simple representation. It is as important to care for the test
base as for the production code.

3.5 The Anatomy of Software Craftsmanship 51

3.5.2 D Iterative design, development, and verification
The first principle in the software craftsmanship manifesto states, “Not only
working software but also well-crafted software.” The practices outlined in
Table 3.8 are centered on verification and iterative refinement of the software
and its requirements. There are also dependencies to an architecture focused on
testability and clean code; as stated succinctly by Martin[88] in book B8: “The
fundamental assumption underlying all software projects is that software is easy
to change. If you violate this assumption by creating inflexible structures, then
you undercut the economic model that the entire industry is built on.”

Table 3.8: References to D Iterative design, development, and verification

Id Name Books Literature Qualitative
D1 Incremental development B1, B2, B3, B4, B5 P1, P11, P12, P17 SwArch1, Dev1, Test2

B6, B7, B8, B9, B10
D1.1 Growing value-added functionality B1, B2, B3, B4, B5, P1, P3, P5, P7 SwArch1, Dev1, Dev2, Dev3, Test1, Test2

B7, B9, B10
D1.2 Team tests what team develops B3, B7, B8, B9, B11 P3, P17 Dev1, Dev2, Dev3, Test2
D2 Testing pyramid, layered testing B1, B2, B3, B4, B6, P1, P3, P5, P11, SwArch1, Dev2, Test1, Test2

B7, B8, B11 P17
D2.1 Stable, independent tests B8, B9, B10 SwArch1, Dev1, Test2
D2.2 Comprehensive functional tests B1, B2, B3, B4, B7, P3, P11, P17 SwArch1, Dev1, Dev2, Dev3, Test1, Test2

B8
D2.3 Test-focused development B2, B7, B9 SwArch1, Dev1, Dev2, Dev3, Test1, Test2
D2.3.1 Pairing B3, B6, B7, B8, B9, P5, P8, P10, P12, Dev3

B11 P13, P15
D2.3.2 Test-Driven Development B3, B4, B6, B7, B8, P1, P3, P11, P13, Dev1, Dev2

B9 B10, B11 P15
D2.4 Expressive tests, simple structure B2, B4, B7, B8, B9, SwArch1, Dev1, Dev3, Test2

B10
D3 Design documentation B1, B7
D3.1 Executable (tests as doc) B1, B2, B4, B7, B8 P4, P5, P9 Dev1, Test2
D3.2 Collaborative (wiki) P2, P3, P4, P8, Dev1, Dev2, Test1, Test2

P9, P15

D1 Incremental development

• Literature: Ten of the studied books relate to an incremental de-
velopment in some form, and the majority of them refer to “growing”
software rather than “building,” “designing,” or “architecting” soft-
ware, see Table 3.8. This implies that software construction is an act
of successive refinement, where the software is constantly tended to
and updated as the requirements or environment changes.
Papers P1, P7, P11, and P17 discuss the iterative development and
the moving between designing, making, evaluating, and reflecting
phases of software development.
Papers P1, P3, P5, P7, and P17 mention prototyping and how testing
is done in parallel with development.

52 Towards an Anatomy of Software Craftsmanship

Books B3, B7, B8, B9, and B11 state that teams should be cross-
functional and autonomously analyze, implement, and verify func-
tional requirements. Book B8 states: “QA should find nothing,”
implying that QA is a separate team, focusing on verifying other
requirements than pure functions, for example, usability, stability,
security, and other quality requirements of the produced system. Pa-
per P3 also mentions the introduction of cross-functional teams, as
one part of transforming a large organization into Lean Software De-
velopment.

• Empirical findings: Testing of functions and requirements took
place in the same team, and in the same sprint, as where the devel-
opment of the production code took place. Because developers using
the original functional test tool could not keep up with the develop-
ment pace, a couple of developers wrote a new Java-based test case
runner, where functional test cases was specified in a custom XML-
based language. This allowed development of test cases to proceed
alongside development of production code.
Table 3.9 shows the linear evolution of the codebase over time for
the major types of source code in the product. All studied types
grow linear over time, with all p-values less than 10−13 and adjusted
R2 between 0.91 and 0.98. For the Java- and XML-based code, the
column Initial size reflects the state at the start of data collection
in January 2011, while the Scala-based code was first developed in
Q3 2012. The column Growth per quarter is the calculated linear
regression coefficient, and End size is the size at the end of the
studied period, in December 2016.

Table 3.9: Summary Code Statistic for the Five Major Code Types

Code type Lang. Initial Growth per p-value Adjusted End
size quarter R2 size

[kLOC] [kLOC/qtr] [kLOC]
Production Java 150 26.1 1× 10−13 0.91 753
Unit tests Java 64 24.7 3× 10−14 0.92 620
Integration tests XML 83 67.2 3× 10−14 0.92 1560
Web GUI prod. Scala 9 3.3 1× 10−13 0.97 65
Web GUI tests Scala 2 8.4 4× 10−15 0.98 129

By calculating Pearson’s correlation coefficient (rxy) between differ-
ent types of code, we confirm that the volume of the different types

3.5 The Anatomy of Software Craftsmanship 53

of code varies together. Production code are related to unit tests by
a correlation coefficient of rprod,unit = 0.998 (p-value < 2 × 10−16),
and to integration tests by rprod,int = 0.996 (p-value < 2 × 10−16).
The web GUI production code are related to the web GUI tests by
rwebprod,webtest = 0.975 (p-value < 6× 10−12).
All interviewees mention the highly iterative development process,
and one developer contrasts this with regular consultancy work: “In
a consultancy, they focus more on the delivery than on the crafts-
manship. . .We used an iterative, test-driven way, to be prepared for
what can happen in the future.”(Dev1)
Several interviewees also mention tests being developed alongside the
production code, e.g., “We used to ensure that whatever test cases
had been written in the [test plan, a shared Excel document] will
translate into some automated test cases.”(Dev2)
“A strength was that we could test in parallel with development,
based on a clear requirement base, in [the wiki-based requirement
tracking system], where everyone could read it.”(Test2)

• Analysis: Incremental development is part of getting reliable and
actionable feedback and so is tightly tied to F2 Short feedback loops.
Because the teams owned “the whole development process,” including
functional testing, they took responsibility for the entire development
phase, including documenting used solutions.
The fact that all five types of code grow linearly, together, indicates
that software was developed incrementally throughout the studied
period. In a non-incremental scenario, we would have expected inte-
gration tests to lag behind the production code as the focus of the
organization moved to test phases that followed growth of production
code and unit tests. We see no such findings in our data.
The organization took action when it discovered that the originally
used functional test tool could not keep up with the development pace
and created an alternative solution based on structured text files.
However, the amount of function test code soon eclipsed the produc-
tion code, and it continued to grow faster throughout the study.

D2 Testing pyramid, layered testing

• Literature: Eight books and five papers stated that tests should
be layered into different categories, see Table 3.8. The importance

54 Towards an Anatomy of Software Craftsmanship

of having a stable base of test cases, independent of each other, is
mentioned in three books, B8, B9, and B10.
Papers P3, P11, and P17 mention how solutions can be proposed by
writing tests, for instance, using Behavior-Driven Development, and
the practice of high-level integration tests is also stated in books B1,
B2, B3, B4, B7, and B8.
Focusing on the development of tests, whether using TDD or a less
stringent method, is mentioned in nine books and six papers, with
papers P3, P13, and P15 explicitly mentioning TDD as a craftsman
skill to practice.
The practice of having automated tests of different kinds with a read-
able, simple structure is stated in five books, with the most pointed
citation mentioned in book B8: “Unit tests and acceptance tests are
documents first, and tests second. Their primary purpose is to for-
mally document the design, structure, and behavior of the system.”
The “Agile Testing Quadrants” model [28] can be used to classify
tests along the lines of “supporting the team” and “criticizing the
product,” versus “business-facing” (verifying customer requirements)
and “technology-facing” (verifying individual implementation deci-
sions). Outside the SLR findings, the books [61] and [86] also state
that designing for testability increases the likelihood of tests being
developed.
Paper P5 explains how a successful test run triggers a new executable
package and deployment to a DevOps pipeline, followed by further
non-functional testing and further validation.

• Empirical findings: In the studied case, already from the start of
the product, considerable focus was placed on verification on several
layers, as illustrated by the test pyramid [25]. While some developers
preferred TDD, others instead preferred to write tests after the pro-
duction code, but tests were expected to be developed close to the
production code, minimizing feedback time (item F2). As stated by
the lead architect: “I call it Test-Focused Development, because one
of the ground rules is that, if you build something, it should be easy
to test. Always easy to test. . . If it is easy to unit test and function
test, then it is better than building the small, slimmest solution. So,
I always have this pyramid. . . You should work with tests from Day
1. If you don’t do that, you’re doing it the wrong way”(SwArch1)

3.5 The Anatomy of Software Craftsmanship 55

Another interviewee confirmed the test focus, by comparing with
another product: “I think it [relates to] how we introduced ways of
working in [studied case] We focused much on test coverage, and
there was solid practice related to which test cases to write, how to
review and present them. There was much more focus on testing, on
automation and those areas.”(Dev2)
The amount of (functional) integration test code soon eclipsed the
production code, while the unit tests grew at the same pace as the
production code. The same pattern repeated itself when the new
Scala-based web-GUI was developed in 2012, as its functional test
codebase, also written in Scala, grew faster than the GUI production
code.

0

500000

1000000

1500000

2012 2014 2016

time

n
o
n
−

c
o
m

m
e
n
te

d
 c

o
d
e
 l
in

e
s

a)

0.5

1.0

1.5

2.0

2012 2014 2016

time

T
e
s
t
c
o
d
e
 s

iz
e
 r

e
la

ti
ve

 t
o

 p
ro

d
u
c
ti
o

n
 c

o
d
e
 s

iz
e

b)

category prod (Java) unit (Java) int.test (XML) prod (Scala) int.test (Scala)

Figure 3.5: Ratio of test code vs. production code over time.

Figure 3.5a shows the numbers of non-commented source code lines
for the production code (prod (Java)), unit tests (unit (Java)), inte-

56 Towards an Anatomy of Software Craftsmanship

gration tests (int.test (XML)), web GUI (prod (Scala)) and web GUI
integration tests (int.test (Scala)), and Figure 3.5b shows the relative
size of the unit tests and integration tests versus the Java production
code, and the relative size of the Scala-based integration tests versus
the Scala-based GUI production code.

The figure shows that the integration tests were growing much more
than the production code, while the unit tests kept approximately the
same growth rate. As reported in Table 3.9, all five codebases grew
linearly throughout the studied period. The three dips in integration
test size during Q1 2011, Q1 2012, and Q4 2016 were due to product
realignments, where old protocols and functions were removed. Both
integration tests (written in XML) and GUI tests (written in Scala)
grew to about twice the size of the corresponding production code,
although the GUI code was much smaller. The unit test base was ini-
tially slightly less than half the size of the non-GUI production code
but grew to about four-fifths (≈ 80%) of the production codebase.

The unit tests can be further subdivided into “pure unit tests” (no
interaction with the outside world) and “fixture tests,” where the
tests interact with a locally installed and prepared database. Non-
functional testing used dedicated hardware, including dedicated sim-
ulators. The product placed a relatively large emphasis on unit tests
that interacted with a locally installed database, using the Transac-
tion Rollback Teardown pattern [95]. At the end of the studied pe-
riod, 8,327 integration tests, 18,412 database-interacting unit tests,
and 5,328 “pure” unit test methods had been developed. The number
of pure unit test cases were higher, as these also included parameter-
driven tests generated from the code via reflection, see item F3 about
the “meta-tests.”

Each developer knew how to use and develop integration tests, though,
in practice, one or two persons per team focused on writing them.
“Anyone should be able to do the testing. . . One or two persons in the
team, part of the team, developing [integration] test cases. He used
to get assistance from other developers, in case required.”(Dev2).

Another developer mentions, “. . . some testers might not have the
correct background or understanding, so I gave them a template,
like: ‘This is how I think, now you explore more into your scenar-
ios. . . ’”(Dev1)

3.5 The Anatomy of Software Craftsmanship 57

The lead architects decided to include “test helpers” in the func-
tional verification phase, which facilitated efficient integration test-
ing. “And then add some test packages on the side, which are used
in the testing. So it’s not black-box, but more gray-box. You use
those packages to make your test flow a little better.”(SwArch1)
The Definition of Done for feature development (see item C2.3),
stated that functional verification should be automated before fea-
ture delivery. How to achieve this was regularly discussed in cross-
team forums (see item C3). “Everything should be tested, and there
should be automatic test cases for everything. . . ”(Dev3) Despite this,
some manual functional test cases still existed. At the end of the
studied period, there were 24 documented manual functional test
cases, mostly related to data aging (importing/exporting archived
database data) or security issues. These were executed based on a
“risk-based judgement,” typically when changes had been made in
the tested area or before major releases of the product. The system
testing team also focused on manual testing, such as validating in-
structions for administrators or integrators. This test phase was the
first with a full hardware deployment, including Hardware Security
Modules, application firewalls, and load balancing hardware. In con-
trast, functional testing in development teams utilized plain Linux
virtual machines.
One developer mentions that the team structured their work so they
would interact all the time and used this as a form of pair program-
ming: “We did not divide tasks [in functional areas], such as GUI,
persistence and so on. Instead, we pair-programmed a lot. We were
encountering each other’s code all the time, communicating verbally:
‘Hey, this method you did—can I change it, make it better?’”(Dev3)

• Analysis: Specifying requirements as test cases will lead to the vol-
ume of test code eventually outgrowing the production code, as is
visible in Table 3.9 and Figure 3.5. Therefore, it is important that
these test cases (requirements documents) are easily readable, fre-
quently maintained and executed to ensure that they still reflect the
state of the product. Bjarnason et al. [11] describe five different vari-
ants of using test cases as requirements, based on a multi-case study
made at three companies of various sizes. In particular, while the
largest company had failed to completely specify end-to-end behav-
ior, including user interactions, as test cases, they reported success

58 Towards an Anatomy of Software Craftsmanship

in using the process when developing application programming
interfaces (API).
Having this layered testing architecture as a regression test base en-
ables safe refactoring and transformation into clean code (item A3).
Thus, the test base enables clean production code, and the tests
are required to be clean in order to be readable and maintainable.
Overall, this enables an evolutionary growth of the software, with-
out “big-bang” integration phases. However, cleaning and refactoring
the tests themselves are harder to achieve. When changing test cases,
care must be taken that the changed tests cover the original require-
ments. How to achieve this remains an unanswered question.
There will always be some tests that are not possible or economically
viable to automate. In the studied product, the developers identified
24 test cases out of a functional regression test base of 8327 test cases
(0.29%) as belonging to this category.
The different layers of tests are important to enable the feedback
loops necessary to guide incremental design and development. Each
layer has different trade-offs related to reflecting the true production
environment behaviour versus being fast and efficient to develop and
trouble-shoot. In the product, many unit tests interacted with a
locally installed database, which has the disadvantage of adding lead
time to the feedback loop. However, there is also an advantage in
that relatively large parts of the system can be tested down to the
SQL level without mocking behavior.

D3 Design documentation

• Literature: Five books mention documentation in relation to crafts-
manship, as self-documenting programs, in B1, tests as documenta-
tion, in B4 and B8, and B7 references to Knuth’s work on literate
programming [71]. Book B2 states that “a lesson from software engi-
neering is that hardware and software never quite match their docu-
mentation.” One solution to this proposed in both B7 and [61] is to
extract documentation from the source code.
Papers P2, P3, P4, and P15 mention collaborative documentation
through Wikis or shared recordings. Paper P9 states that a shared
user story repository gives immediate feedback on changes. Papers
P4, P5, and P9 mention code as communication, exemplified by

3.5 The Anatomy of Software Craftsmanship 59

Domain-Driven Design, and acceptance tests in the form of executable
user stories.

• Empirical findings: The studied product had no formal design
documents (e.g., component descriptions) maintained by the devel-
opment teams. Instead, they relied on a wiki system to document
design principles and executable test cases as documentation of re-
quired behavior. The organization used deliberate practice (see C5)
as a tool to teach development principles.
As part of defining the external API, a tool was developed based on
the Javadoc11 tool, converting code comments and annotations, in-
cluding validation rules, into a form suitable for customers or system
integrators. This documentation evolved together with the API.
The integration test cases also frequently served as documentation
of how the product behaved, putting pressure on their quality and
descriptions. The test case structure, including directory and file
names, became part of the documentation, as it became harder to
know where to look as the test base grew. As discussed in item F5,
the automated test cases were continuously executed, and their re-
sults verified, meaning that the current tests reflected the actual state
of the product.
Several interviewees mentioned that they were using tests as docu-
mentation: “The test was the documentation. . . even if we had fol-
lowed [the requirement tracking tool].”(Test2)
One interviewee mentioned the lack of design documentation as a
hindrance: “There are different levels of documentation. There are
many complaints [from developers] that, for instance, data models
are not documented, there is a lack of a leitmotif. On an overarching
level, to get the big picture, there is quite good product documenta-
tion, though..”(Test1)

• Analysis: Executing design documentation towards a working sys-
tem means that inconsistencies quickly surfaces, enabling quick cor-
rections. However, as the test base grows, the internal and external
structure becomes extremely important. Each test case needs to
be self-sufficient, describing its needed environment and its setup.
Business-facing tests should be specified in an appropriate high-level
language, such as a Domain-Specific Language, to be accessible to
people not directly involved in development.

11https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html

60 Towards an Anatomy of Software Craftsmanship

Collaboratively edited wiki pages documented the core design princi-
ples, with automatically executed test cases documenting the detailed
product features. Documents targeted for customers or support per-
sonnel were kept at a high functional level. Detailed protocol docu-
mentation was generated directly from the source code, so it would
automatically match the delivered product.
We see some evidence that there was a perceived lack of certain
aspects of documentation, though the overall product level seems ac-
ceptable. This could indicate that having a more structured approach
to design documentation than a wiki system could have long-term
benefits. At the same time, we see that developers were using the
test base as documentation, meaning that as long as the tests are
readable and at an appropriately high level, the system’s code and
behavior would be understandable.

Summary: When focusing on incrementally growing software, it is essential
to focus on, and build, a comprehensive regression test base to validate that
what was built still adheres to prior requirements. The regression tests will serve
both as a safety net and as the actual specification of the behavior of the system
under construction. As such, they should be readable by both programmers and
requirement owners. To meet this goal and to ensure quick feedback, tests shall
be structured in different layers. Higher-level tests shall use a language closer
to the business domain than the ordinary programming language to support its
usage as system documentation.

Note that not only the tests but also their organization and structure act
as documentation. This is because the volume of tests will eventually eclipse
the production code, and all developers should realize that it is as important to
work with and care for the tests as with the production code.

3.5.3 C Shared professional culture
The software craftsmanship manifesto states: “Not only individuals and inter-
actions, but also a community of professionals,” as well as “Not only customer
collaboration, but also productive partnerships,” which implies a long-term com-
mitment to what is produced.

The focus on the community of professionals also implies a shared, common
culture. As illustrated in Table 3.10, we have found evidence that a shared
culture of learning, caring, accountability and transparency is beneficial and
aligns with the craftsmanship approach.

3.5 The Anatomy of Software Craftsmanship 61

Table 3.10: References to C Shared professional culture

Id Name Books Literature Qualitative
C1 Standard development environment B1, B2, B6, B7, B9 P2, P4, P8, P9, SwArch1, Test1

P12
C1.1 Common code style B4, B7, B9, B11 P2, P3, P4, P5 SwArch1, Dev1, Dev3
C2 Common professional culture B2, B7, B8, B9 P3, P7 SwArch1, Dev1, Dev2, Dev3, Test1, Test2
C2.1 Caring B3, B4, B8, B9 P1, P3, P7 Dev1, Dev2, Dev3, Test1, Test2
C2.2 Clear roles, responsibilities B3, B8 P3 SwArch1, Dev1, Dev2, Dev3, Test2
C2.3 Definition of Done B3, B7, B8, B9, B11 P3 Dev1, Dev3, Test2
C2.4 Pride B5, B6, B7, B8 P4, P17 Dev3, Test2
C2.5 Collective ownership B7, B8 SwArch1, Dev3
C3 Cross-team communication B3, B7, B9 P1 Dev1, Dev2, Dev3, Test2
C3.1 Cross-team forums B3, B9 P1, P2, P3, P4 Dev1, Dev2, Dev3, Test2
C4 Visibility / Transparency B1, B3, B6, B7, B9 P3, P9

B11
C4.1 Visible backlog B3, B9, B11 P3 Dev2, Test1, Test2
C4.1.1 Technical debt visible, acted on B9, B11 P5 SwArch1, Dev1, Dev2, Dev3, Test1
C4.1.2 Pull-based backlog B3 P3, P5
C4.2 Visible status B3, B8, B9 P3, P9 Test1, Test2
C4.2.1 Information radiators B3 P3, P9
C4.3 Visible release plan B9 P3 Test1, Test2
C5 Accountability B2, B3, B7, B8, B9 P3, P8 Dev3, Test1
C5.1 Humility B6, B8 Test1
C5.2 Reputation B2, B6, B7, B9 P2, P8
C6 Culture of learning B1, B2, B3, B6, B7, P3, P11, P12, P15 SwArch1, Dev1, Dev3, Test1, Test2

B8, B9, B11
C6.1 Reflecting B2, B3, B6, B9, B11 P1, P3, P5, P11,

P15, P17
C6.2 Kata exercises B6, B8, B9 P3, P10, P12, P13 SwArch1, Dev1, Dev2, Dev3, Test1, Test2

P15
C6.3 Mentoring B1, B2, B3, B5, B6 P1, P3, P8, P15

B7, B8, B9

C1 Standard development environment

• Literature: Books B1, B2, B6, B7, and B9 mention the benefits
of standardizing on a toolchain. In particular, book B2 notes that
the partnership approach highlights the importance of focusing on
long-lived development tools.
Four books (B4, B7, B9, and B11) explicitly mention how shared cod-
ing standards help communication and readability. Brad Fitzpatrick,
in B7, mentions how Google keeps strict guidelines for programming
styles, including code layout, formatting, naming, and which patterns
and conventions to use12.
Several papers also promote common development standards as ben-
eficial for software craftsmanship in terms of structured exercises to
learn the correct shortcuts for the particular tool in use (P12), im-
prove source code quality (P5), the usefulness of a wiki page contain-
ing both coding style guidelines as well as instructions for how to set

12https://github.com/google/styleguide

62 Towards an Anatomy of Software Craftsmanship

up the environment (P2), capturing IDE configuration in a reposi-
tory (P9), creating a sense of commitment to a particular tool (P4)
and obtaining necessary knowledge how to best use or not use the
latest technologies, tools, processes, and practices (P8).

• Empirical findings: At the start of product development, the lead
architect chose a shared development style and code rules. The uni-
fied style helped both understanding the code and aided in merging
and back-porting fixes to older branches.

Although standardized, the used toolchain varied over the years. Ini-
tially, developers used Eclipse on Windows laptops, later also IntelliJ
and Linux laptops, and eventually, Windows was dropped as a de-
velopment platform. Costs and competence were cited as the reason
for changing both IDE and OS. When the vendor released a usable
IntelliJ version free of charge, the perceived benefits (relative to the
already free Eclipse) outweighed the cost of change. Similarly, when
the company introduced Linux laptops as a supported development
environment, the organization quickly adopted the new development
platform, as it allowed developers to develop software in an envi-
ronment close to the target environment, which always was Linux.
When introducing the new IDE, it was configured to format code in
the original Eclipse formatting style.

The lead architect switched build tool from Apache Ant to the more
expressive Gradle tool in mid-2012. The decision was driven by the
new tool’s stricter dependency management, stricter build scripts,
increased performance and the ability to more easily develop plug-
ins. The new tool was used to automate more release tasks, and to
build a domain-specific language (DSL) for deploying test ma-
chines in different configurations, resulting in more varied automated
integration testing. As stated by the lead software architect: “Large-
scale software development requires both structure and flexibility,
but these must never cancel each other out. I think Gradle performs
a better balancing act than, for example, Maven and Ant, which are
at the opposite ends of that spectrum.”(SwArch1)

The Eclipse formatting rules were added to a shared repository in
November 2011, as part of the first expansion to a remote site. Until
then, developers used the standard Eclipse configuration. In January
2016, a similar ruleset was created for IntelliJ.

3.5 The Anatomy of Software Craftsmanship 63

• Analysis: The standardized code style is beneficial for sharing code
between the different branches as it helps version control tools merge
code automatically, without distracting white-space or formatting
differences. Having a shared toolkit also helps people understand
and be more efficient in helping each other.
As evidenced by the empirical findings, standardized tools do not
imply a static toolkit. Instead, a learning organization should always
be on the lookout for new and better tools that do the task at hand
more effectively and efficiently. However, the cost of changing tools
will include teaching the organization ways of working with the new
tool.
Some tools are more challenging to switch than others. While the
swap of the build tool Ant for Gradle involved few persons and was
made abruptly, switching development IDE from Eclipse to IntelliJ
took much longer and included trying to configure the new supported
IDE so it could peacefully coexist with the older supported tool.
Static code analysis and having the build process fail in case of vio-
lations helped unify the code style, as described in item F3.

C2 Common professional culture

• Literature: While Boehm in P14 expresses a view of “software craft-
ing” as the “cowboy programmer,” who “hastily patches faulty code
by pulling an all-nighter,” this is not the dominant view in the sur-
veyed literature. Instead, four books (B2, B7, B8, and B9) expressly
state the importance of teamwork and how important it is to create
a common culture of collaboration. This view is also expressed in P3
and P7.
Four books, B3, B4, B8, and B9, state the importance of caring for
the test suite (the “code production line”). Hunt and Thomas [61]
also mention the broken window theory, first formalized by Wilson
and Kelling [66], and how it relates to the importance of keeping the
test base clean and working at all times.
Any organization larger than an individual would benefit from ex-
pressing the expected roles and responsibilities. Larman et al. in B3
recollect how one chief architect states that Scrum helped the team
take responsibility for their assigned tasks. In B8, Martin expresses
the view of having separate, but jointly collaborating, QA and devel-
opment teams. Paper P3 reports how Communities of Practice

64 Towards an Anatomy of Software Craftsmanship

(CoP), together with open spaces, support discussing problems, so-
lutions, and new ideas regarding a specific role, practice, or topic.
Five books (B3, B7, B8, B9, and B11) and paper P3 explicitly men-
tion the concept of Definition of Done (DoD), relating to a Scrum
practice. Paper P3 refers to the DoD as partially standardized, while
book B8 implies that the actual DoD would vary according to the
business requirements, which analysts should write as acceptance test
cases.
To take pride in one’s work is mentioned by four books (B5, B6,
B7, and B8) and two papers (P9, P17), and both Martin in B8 and
Hunt and Thomas [61] states how this is related to responsibility and
accountability (C5).
The principle of collective code ownership is a loaded term with mul-
tiple views present. Two experienced interviewees in book B7 lean
towards individual code ownership as something that cannot be de-
nied, while Martin, in book B8, states that it is better to break down
all walls of code ownership and have the team own all code.

• Empirical findings: In the studied case, all lead developers had
prior experience working with overseas teams. For this reason, they
requested that teams onboarded from China (in 2011) and India
(in 2013) were to visit the primary site for several months to learn the
product and the professional culture, in particular, the product de-
velopment process, including team tasks, planning, and verification.
When the Indian teams went back to their site, a senior developer
joined them for a year to support and guide their development efforts.
The studied organization had a shared DoD with clear and actionable
checks in several areas, such as Requirements, Security, Design, Test,
and Customer Documentation and User Experience. Three different
checkpoints were in place:
– End of initial requirements gathering → start of product devel-

opment
– End of product development → start of system testing
– End of system testing → feature released to the market

Each checkpoint had a template-based DoD checklist, signed off be-
fore the feature moved to the next phase. The requirement engineer
(PO, see item F1) signed off the initial checklist. The Scrum Mas-
ter in the development team signed off the middle checklist, and the
team lead in the System Test team signed off the final checklist.

3.5 The Anatomy of Software Craftsmanship 65

Developers from both the primary and secondary sites indicate that
they felt a similar mindset in both sites. “. . . work culture in [main
site] and India was almost similar. . . But in [other product] I see lots
of difference between every corner of the world.”(Dev1)
The developers also appreciated the practice they received and the
concrete principles they learned. “. . . entering into a project with
solid principles, these are the layers, with full hands-on experience,
was the best.”(Dev1) “You have a defined way of working, with re-
spect to how you code the application.”(Dev2)
Two interviewees mentioned the pride they took to make sure that
what the team produced should also work. “We had some kind
of pride in the team. We don’t hack together something and just
leave it. Rather, when we say that we are done, then we really are
done..”(Dev3)
The regression test suite was provided with constant attention and
care. To counter instabilities, in 2015, the organization set up a sepa-
rate daily meeting with a participant from each team, discussing un-
stable or erroneous test cases and distributing them between teams.
As described in item C4, the teams distributed and managed the
identified tasks.
The test code was seen as important as the production code, as this
was the documentation of how the system should behave. “The test
code was equally important as the production code, because the tests
showed what the product could do, like a fact-based answer.”(Test2)
Two interviewees also mentioned how all developers cared to avoid
security vulnerabilities in this product, relative to other experiences:
“[In this product] there was a common way of working, focus on se-
curity, risk review, code reviews. . . These were very good controls.
But when I moved to [other product], they did not care about any-
thing. . . Dev2”(.)

• Analysis: The surveyed literature indicates that the “lone cowboy
programmer” view of software crafting has little support by practi-
tioners, which also is implied by the manifesto focus on “a community
of professionals.”
The Definition of Done concept has been studied before [123] and is
well-known in a Scrum context. According to the study, the focus of
the DoD should be on the systematic requirements that are common
for each user story. The studied organization followed this approach,

66 Towards an Anatomy of Software Craftsmanship

using three different DoD checklists, corresponding to the three de-
velopment phases (elaboration, implementation, and system testing)
before a feature was released.
It is undoubtedly the case that developing a large regression test base
requires care and thoughtful design of how to prevent instabilities.
For developers to trust that the tests reflect the true state of the
application, the test base needs to be stable and predictable.

C3 Cross-team communication

• Literature: Two books (B3 and B9) and four papers (P1, P2, P3,
and P9) mention the importance of communication across teams, for
instance, using the concept of Communities of Practice (CoP) [136].
These communities are used to source and validate potential solu-
tions, spread knowledge, and instill and reflect upon social and pro-
fessional norms.
Paper P2 explicitly states that the studied organization had tens of
different CoP, which formed as needed and ceased to work when they
were either dysfunctional or had fulfilled their purpose. The paper
also states the importance for a CoP to have a good topic, passionate
leader, proper agenda, decision-making authority, open communica-
tion, suitable rhythm, and cross-site participation, where applicable.
Different communities, known as “Guilds” within Spotify, their chal-
lenges and benefits, have also been studied before, e.g. [124], [125].

• Empirical findings: In order to establish a common way of work-
ing, one developer stressed the cooperation that took place between
teams: “It was not unusual to work across team boundaries when
working with the test cases. When we discussed and found that
the structure would not hold any longer, we discussed how to set
the new structure. And then two or three participants would do
the actual restructuring and report the progress on our [QA group]
meetings.”(Test2)
Indeed, as the number of development teams grew in the product, a
need for more efficient communication surfaced, both for architecture
and testing activities, causing the organization to establish both an
architect group (TA, see item A1) and a Quality Assurance (QA)
group. Each group contained one member from each team, meeting
regularly, the TA group twice, and the QA group once per week.

3.5 The Anatomy of Software Craftsmanship 67

Four developers mentioned the value of the recurring reviews as a
means of competence sharing, for instance: “We used to present how
we would implement a particular requirement [in the TA group] and
get feedback. A very structured approach.”(Dev1)
“Having coverage — what do we think we need to do? So, imple-
mentations were reviewed in the TA forum, and test analysis in the
QA forum. Where the other teams could give their feedback. You
explained what you intended to do, and they could comment: ‘No,
but you missed this area’ — because they might have worked in that
area recently, and we had never been there.”(Test2)
One interviewee mentioned that time-boxing was used to limit the
amount spent in meetings: “When we grew with more teams, we
had to split up in review-groups, to review each others’ [analyses]
in detail. Building those groups based on competence to get good
competence spread. [In the meetings] we made sure that everyone
had read the analysis before the meeting, to be efficient, so we just
could focus on the comments [that all members provided]. Sometimes
we had mail conversations in these groups as well. But the analysis
was documented [on the shared wiki].”(Test2)
In the studied product, each TA member had 20% of their time al-
located for TA related improvement tasks, and a similar agreement
existed for the QA group.

• Analysis: Our evidence supports the benefits of Communities of
Practice (CoP), both in spreading knowledge (e.g., via review feed-
back) and professional norms (e.g. amount of tests needed).
Participants from both the primary and the remote site participated
in the weekly CoP meetings, ensuring that the communication flowed
between the sites.

C4 Visibility / Transparency

• Literature: The principles of visibility and transparency are closely
related to the C5 Accountability and professionalism inherent in pro-
ductive partnerships.
Keeping the product backlog visible and up to date is mentioned in
three books (B3, B9, and B11) and paper P3. The Lean principles
of keeping options open and limiting work in progress by having a
pull-based backlog are mentioned in papers P3 and P5 and book B3.

68 Towards an Anatomy of Software Craftsmanship

The importance of visualizing and acting on technical debt is also
mentioned in the books B9, B11, and in paper P5.
Being open and clear about development status is discussed in three
books (B3, B8, and B9) and in papers P3 and P9, where the goal
of maximum project status visibility is stated. These two papers and
book B3 also highlight how the use of information radiators helps in
this regard.

• Empirical findings: As described in item C3, the studied organi-
zation formed cross-teams forums to counter the blame game often
surfacing before meeting a deadline.
One identified problem was the large test base (shown in Figure 3.5),
which required continuous maintenance effort. As described in items
C2 andC3, starting in 2015, teams coordinated to discuss, distribute
and solve issues in this test base. The QA group was also driving im-
provements in this area, acting as a discussion board and mentoring
others.
Information radiators in the team area, initially two lava lamps, later
replaced with nine remote-controlled LED lamps, were used to broad-
cast the most important build status.
Stressing to make deadlines often cause people to take shortcuts.
One often-used shortcut was to tag failing or unstable test cases
as Ignored. The team mitigated this behavior by using Git logs to
determine who had ignored a particular test case. After an initial
grace period, automated periodic reminders were sent to this author
to either fix or remove the test case. The QA forum discussed and
took decisions on how to proceed with such tests.
“Sometimes you had to go in and ignore test cases. . . And later, you
got an automated mail, stating, ‘Please fix. . . ’ By then, you most
likely had forgotten about the ignored test case, so you had like a
‘reproach’ there.”(Test2)
Several interviewees mentioned the importance of visibility, of being
honest about the status and potential obstacles, and being aware of
the planned releases. “Having a dialogue, saying ‘No, we are not
done yet, because. . . ’ and highlighting potential delays as soon as
possible. I think that was a strength also, to be able to de-scope,
moving to a later feature. We never skipped [particular phases, e.g.,
testing], but rather whole areas or scopes..”(Test2)

3.5 The Anatomy of Software Craftsmanship 69

One interviewee mentioned a particular strategy for dealing with
project managers, who tend to prioritize delivery precision over de-
livery contents or quality: “A senior developer taught me to frame
estimates like: ‘If I am allowed to do this task, it will take me four
weeks. But if we don’t do it, the cost will be eight hours per week,
per team, indefinitely.’ If you start to present those estimates, then
[the project manager] will act.”(Test1)
Many interviewees also mention that refactorings A3.4 were impor-
tant to manage the technical debt: “The best part was that technical
refactorings were taken as kind of a task, whereas in [other product]
it is taken as a feature, and nobody will budget for it..”(Dev1)
“The legacy that exists that is extremely large. . . You always build
a little debt. But you always need to know what your debt is. And
work with it continuously..”(Dev3)
“Of course, we would like to refactor more. But I still think that we
get a reasonable time for it..”(Test1)

• Analysis: As stated above, visibility and transparency are closely
related to the principle of productive partnerships, where the long-
term commitment is seen as more beneficial than the deadline-driven
urge to “patch together something.”
The concept of Technical Debt [32] was created as a metaphor to
illustrate when developers choose or are forced to take shortcuts,
such as ignoring test cases. It is important to keep track of such
debt, and the studied organization used automated tools to remind
the author to take action (i.e., consider how to proceed with the
ignored test case).

C5 Accountability

• Literature: Showing accountability for what you produce is men-
tioned as a craftsmanship trait in books B2, B8, and B9. In B7,
Joshua Bloch states that “ultimately, you are responsible for your
own work.” Hunt and Thomas [61] also note that a professional
software developer should expect to be held accountable and hon-
estly admit mistakes or errors in judgment, which also plays into
item C4. Paper P3 also mentions team accountability, whereas pa-
per P8 stresses personal responsibility and sound work habits as char-
acteristics of successful craftspeople.

70 Towards an Anatomy of Software Craftsmanship

Books B6 and B8 stress the importance of humility to counter pro-
fessional pride. In B6, the authors argue that apprentices should
combine humility and ambition to progress in the right direction. In
B8, the author stresses the importance for all professionals to show
both pride and humility.
Reputation as a basis for recruitment and professional career are elab-
orated in four books (B2, B6, B7, and B9) and papers P2 and P8.
Paper P8 argues for adopting a value model where software lead-
ers have key qualities, such as a proven track record and a personal
approach to solving problems that imparts a signature to their work.
Paper P2 refers to how participation in a Community of Practice
enhances professional reputation.

• Empirical findings: As mentioned in item F2, the project relied on
releases built strictly from version-controlled files, including the build
system itself. Published code artifacts were signed by each developer
using their private key, and the signature was validated towards an
application-specific Certificate Authority (CA) at runtime. Compo-
nents were published by individual developers, while the composite
release was assembled and published by a dedicated Build Master
role, rotating among senior developers, allowing developers to estab-
lish a reputation and enforcing traceability towards accountability.
One developer mentions that team accountability and pride were used
to counter the pressure from other stakeholders to “just get it done.”
Another developer stresses the architects’ accountability and respon-
sibility to communicate a vision of the direction.

• Analysis: Accountability and responsibility are loaded terms but
have long been standard practice in successful open-source projects,
such as the Linux kernel, where no code is merged or released with-
out proper sign-off by a responsible release master. These are also
highly linked to item C4 Visibility / Transparency, implying that
participants should take responsibility for their creations, highlight is-
sues and learn from mistakes, rather than place the blame elsewhere,
which is typically the case in dysfunctional organizations [137].

C6 Culture of learning

• Literature: Eight books from the SLR findings state the benefits
and necessity of a culture of learning and continuous improvement,

3.5 The Anatomy of Software Craftsmanship 71

which clearly is a major part of software development. Five of these,
B2, B3, B6, B9, and B11, also state the importance of reflecting on
improving efficiency and becoming a reflective practitioner.
Papers P3 and P5 stress the notion of learning from feedback, such as
first-hand evidence or team experiments. Paper P11 calls for ongoing
move-testing-experiments, where bugs are seen as talk-backs from
the material that drives the development process forward. Paper P2
focuses on knowledge sharing and learning as a part of Communities
of Practice. Paper P15 fosters self-directed learning skills. Papers P1,
P3, P5, P11, P15, and P17 all mention the importance of reflecting
and improving processes.
Three books (B6, B8, and B9) and five papers (P3, P10, P12, P13,
and P15) describe using reflective practice via kata exercises, some-
times practiced in a coding dojo. Paper P12 relates the kata concept
to “experience levels,” and paper P10 draws conclusions from data
gathered during a global day of kata exercises.
Eight books describe mentoring, with B5 vividly describing how the
medieval master craftsman Antonio Stradivari failed to pass on his
violin-making secrets to his sons, either because he could not mentor
them or because he was not aware of them. Papers P1, P3, P8, and
P15 mention the importance of coaching and mentoring as crafts-
manship principles.

• Empirical findings: Learning culture was embodied in the project
via a set of exercises called code katas, which explained and showed
how to use the product development framework to develop function-
ality with the tests in focus using TDD. The katas were first devel-
oped in 2013, preparing for expansion to the India site, and were
updated as the product framework evolved. Eventually, ten katas
were developed, building a simple Java application from scratch to
a fully-fledged GUI, using Scala and the GUI framework used in the
product. The katas built on each other and, depending on the team’s
experience, took between one and two hours each to complete.
The first couple of teams performed the exercises in a group setting.
While this was time-consuming, it also helped the team members to
learn about each others’ strengths and weaknesses and support each
other. Throughout the studied period, newly onboarded developers
used the katas to learn how to develop in the product framework.

72 Towards an Anatomy of Software Craftsmanship

Unlike the initial sessions, these exercises were done individually or
in pairs, shifting the learning experience more onto the individual.
During the initial years, sprint demos for the entire development or-
ganization were used to spread knowledge and show newly developed
features. As the number of people grew, this became too cumber-
some, and the cross-team forums were used instead to spread knowl-
edge. “I think those mini-demos we had [in the beginning], for the
whole organization, was a way to spread knowledge. . . Really impor-
tant also that even though we worked in teams, the decisions we
made were shared among the teams [in cross-team forums].”(Test2)
All interviewees mention the katas and agree that they were a vital
teaching device.
“It was a straightforward, focused approach. During the kata ses-
sions, I realized that [in my team], we have different people with
different backgrounds. . . I could see what mistake that they were do-
ing and I could coach them. . . .”(Dev1)
“One way of practicing is doing structured practice. . . Just to learn
the IDE shortcuts.”(Dev1)
“. . . always try to stay ahead of everyone else. . . It’s better to fail, and
learn something, than not try at all.”(SwArch1)
Two interviewees mentioned retrospectives as a way to reflect on their
progress: “We used to do retrospectives after each sprint, where we
realized: ‘OK, we had this problem in this delivery — how can we
avoid it the next time?’, and we used to collect this in an Excel file
to aid the next task.”(Dev2)

• Analysis: As Brooks stated in B1, software developers are expected
to learn new techniques and tools to improve their skills and pro-
ductivity. He also mentions the importance of mentoring to achieve
this goal, taking as an example the legendary IBM CEO Thomas J.
Watson, who was shown how to sell cash registers by an older, more
experienced sales manager.
However, the concept of code katas takes the showing approach one
step closer to software development. Several books and papers men-
tion the concept, and the studied project was also highly influenced
by katas as a teaching device. As an introductory vehicle to the
application framework, they were successful, as stated by all inter-
viewees. However, few used them as deliberate practice, which was
one of the original goals of the katas.

3.5 The Anatomy of Software Craftsmanship 73

There is evidence that the teams performing the katas in a group
session increased collective learning by making the group discuss in-
dividual problems and solutions.

Summary: When teams are developing and testing features in parallel, the
importance of having a shared professional culture increases. To keep a coherent
architecture, onboarded teams and individuals received structured training, and
everyone was expected to contribute to the culture of learning. The shared
culture was encouraged by several cross-team forums, and three checklists were
used as DoD checkpoints, corresponding to the development phases.

All interviewees stated that the code kata exercises were effective in increas-
ing the understanding of the application framework and the expected profes-
sional behavior, including testing strategies. However, there is no evidence that
participants used the katas to improve their skills beyond the initial try, indi-
cating that the goal of deliberate practice was not met.

3.5.4 F Feedback
Feedback loops have always been important in the software industry, as de-
scribed both by Royce in 1970 [113] and by Brooks (B1) in 1975 [17]. However,
the last 50 years have seen an immense change in speed and automation of both
feedback loops and the software delivery pipeline.

Feedback is one of the five values of the Agile method XP [7], and it is
intimately tied to the sprint practice of Scrum [9], which also includes explicit
review practices.

Lean Software Development [106] also focuses on feedback. In particular,
the practices of Deliver as fast as possible and Build integrity in highlight the
importance of caring for the feedback loops and striving to optimize them, both
from a latency and robustness point of view.

Much of the craftsmanship principles detailed in Table 3.11 are similar to,
or complements, Agile or Lean principles, which is acknowledged in several
books, for example, as stated by Mancuso in B9 [83]: “Agile methodologies help
companies to do the right thing. . . Software Craftsmanship helps developers and
companies to do the thing right.”

F1 On-site customer (proxies)

• Literature: Books B2, B7, and B8 all mention the importance of
close collaboration between the requirement owner and the develop-

74 Towards an Anatomy of Software Craftsmanship

Table 3.11: References to F Feedback

Id Name Books Literature Qualitative
F1 On-site customer (proxies) B2, B7, B8 P3, P7 Dev1, Dev3, Test1, Test2
F1.1 Requirements B7, B9 P9 SwArch1, Test2
F1.1.1 Accessible B2 P3, P9 Dev1, Test2
F1.1.2 Collaborative B1, B2, B3, B7, B8 P3, P5 Dev1, Test1, Test2

B9, B11
F1.2 Frequent demos B2, B3, B8, B9, B11 Test1, Test2
F2 Short feedback loops B2, B3, B4, B6, B7 P1, P3, P4, P5 SwArch1, Dev1, Dev2, Dev3, Test1, Test2

B8, B9
F3 Review B1, B2, B6, B7, B8 P3 SwArch1, Dev1, Dev2, Test2
F3.1 Team review B3, B6, B7, B8, B9 P5 SwArch1, Dev2, Dev3, Test1
F3.2 Static review tools B4, B7 P5 SwArch1
F3.3 Solution review B7, B9 Dev1, Dev2, Dev3, Test2
F4 Learning from feedback B2, B3, B6, B7, B8 SwArch1, Dev1, Dev2, Test1, Test2

B9
F5 Continuous integration and tests B1, B2, B3, B4, B7 P3, P5, P11 SwArch1, Dev2, Test2

B8, B9, B11
F5.1 Frequent release candidates B1, B2, B3, B9, B11 P5 SwArch1
F5.2 Reproducible releases B1, B2, B3, B4, B8, P7

B9

ment team, something that also is a crucial trait of Agile (e.g. [7],
[9]) and Lean [106] processes.
Papers P3 and P5 use the term Product Owner, and report that close
collaboration and communication between the development team and
the requirement engineer reduce the waiting time for clarification or
re-prioritization of requirements. Paper P7 is cited as the inspiration
for the Scrum process [9] and stresses the technical contributions
of the Project Manager and Product Manager roles in the studied
product.

• Empirical findings: In the studied case, the requirements were
version-controlled and located in a single wiki-based tool since early
2012. Prior to that, requirement engineers were using a proprietary
tool, much less accessible. “[referring to the old req. tool]—Oh,
that was a tool. . . It took me ages to learn how to upload an Excel
file there. We were supposed to tag requirements to test cases. It
was terribly unwieldy. . . But then we got [the new tool]. . .We could
structure it to fit our needs, with requirements as user stories with a
version, a history, in one place, reachable for everyone, regardless of
whether you are a tester, developer or system tester.”(Test2)
As part of the development phase, teams demoed potential solutions
for the proxy customers, who provided feedback and direction.
“I would say that we talk to the [requirement engineer/proxy cus-
tomer] at least for half an hour every other day, during the develop-

3.5 The Anatomy of Software Craftsmanship 75

ment of a feature. More in the beginning and in the end, and maybe
with a more quieter period in the middle. But I would say we talk to
them a lot in the middle too. . . About things that pop up, in code,
that maybe are not like the requirement was stated.”(Test1)
“. . . I was just asking the requirements engineer: ‘Is it really this, or
you wanted something else?’”(Dev1)

• Analysis: As stated in both the SLR and case study results, soft-
ware craftsmanship values cooperation rather than confrontation and
constant contract negotiation between developers and requirement
owners.
However, constant cooperation also means that requirements need to
be in a single, accessible and version-controlled space, which tracks
the evolution of the shared knowledge. This is crucial in order to
know the current status.

F2 Short feedback loops

• Literature: Seven of the studied books (B2, B3, B4, B6, B7, B8, and
B9) emphasize the importance of getting quick and relevant feedback
on all development tasks. Book B6 explicitly states that practice
without periodic feedback risks developing bad habits and voices the
importance of giving less experienced developers feedback. As stated
in item D1, book B2 mentions fast feedback as crucial to incremental
development, as it allows adjusting direction before it has progressed
for too long. Papers P3, P5, and P9 highlight the importance of fast
feedback loops, also for distributed teams.

• Empirical findings: In the studied case, product development em-
phasized getting fast, relevant feedback from customers or internal
proxies. There was an urge to slice large requirements into several
pieces, each building on the previous, but deliverable and testable on
its own.
Table 3.12 shows data from 316 features, whose size was estimated
into one of four categories by an estimation group before development
started. The table contains the number of features of each size (N),
and the median (x̂), mean (x̄) and standard deviation (σ) of the
number of calendar days spent in the development (including design
analysis) and system verification (QA) phases. The collected data
refers to the period between June 2012 and December 2016. We

76 Towards an Anatomy of Software Craftsmanship

Table 3.12: Elapsed Calendar Days Per Feature Size and Activity.

Development No QA QA Performed
Est.size N x̂ x̄ σ N N x̂ x̄ σ
X-Small 122 22 28.3 24.8 37 85 7 13.2 16.5
Small 109 29 35.2 30.9 24 85 8 18.9 26.2
Medium 72 47.5 61.3 47.3 10 62 16.5 26.5 31.3
Large 13 62 60.4 49.7 1 12 20.5 21.6 10.7
No QA is the number of features where planned system verification was deemed unnecessary.

tested each group with linear regression and found no statistically
significant change (either positive or negative) between either the
development or the verification duration over the studied period.
The table shows that the organization developed more X-Small (122)
and Small (109) features than Medium (72) or Large (13) ones. This
suggests that rather than spending months developing several large
“chunks of related functions,” the organization valued getting feed-
back, both from system testing organizations and real installations.
All four groups have median values lower than mean values, indicat-
ing right-skewed distributions.
Features deemed unlikely to impact quality attributes such as per-
formance, stability, or usability were not individually validated in
system verification. As indicated in the No QA column, this af-
fected 30% of the X-Small and 22% of the Small features. Statistics
for features in system verification are shown in the QA Performed
columns.
Half of the X-Small features spent less than 22 days in development,
including design analysis. This is interesting as the organization used
three-week sprints, indicating that these features took around one
sprint to complete. Examining the commit statistics for these fea-
tures reveals that the median number of days spent in development
(i.e., not considering design and analysis) was 12.5, with a larger
mean of 20.8 and a standard deviation of 26.7 days. The system
testing organization was also using three-week sprints, which could
explain why the larger features were using close to 21 calendar days
on average.
As described in item F5, teams constantly worked to keep feedback
loops from the Continuous Integration builds as short as possible.

3.5 The Anatomy of Software Craftsmanship 77

This involved both utilizing hardware by executing tests in parallel
and redesigning test cases (e.g., avoiding sleep statements).

• Analysis: Table 3.12 indicates that the majority of features were
estimated to be X-Small or Small and that this is also reflected in
the development and system verification time. However, as indicated
in the table, some features are, due to their nature, impossible to slice
into smaller parts. This affected 27% of all features, most of them
medium-sized. Planned system verification was omitted in 72 of the
analyzed features, meaning that more than one in five (22%) features
were deemed only to contain functional aspects, which was validated
only by the development team before being deployed in production.

F3 Reviews

• Literature: Reviews have long been used as a tool to judge solu-
tions and provide knowledge sharing, and books B2 and B6 state
that the review process goes both ways, where junior developers also
review everything produced by the team for the purpose of learning.
Book B8 recommends pair programming as an efficient and effective
form of instant code review, and papers P3 and P5 confirm the im-
portance of frequent reviews as the core of Software Craftsmanship
principles.
Two books (B4 and B7) and paper P5 mention the importance of
tools that automatically perform some review, including enforcing
formatting rules.
Regarding reviews of solution proposals, there are contrary opinions
in B7. One interviewee (Brendan Eich) states that this implies a
waterfall process, which should be avoided. Still, two other intervie-
wees state that an adequately prepared design review can strengthen
the solution. However, they make a distinction between an internal
design review, whose purpose is to criticize or find omissions in the
implementation, and an external review, involving clients, clarifying
that the proposed solutions solve the intended problem.

• Empirical findings: In 2012, following the expansion to the first
remote site, the studied organization started using a wiki platform
supporting page templates to introduce an Implementation Pro-
posal (IP). For each feature to implement, each team was expected
to produce an IP to be reviewed by the TA and QA groups (see

78 Towards an Anatomy of Software Craftsmanship

item C3) . While the TA group reviewed the technical solutions, the
QA group focused on reviewing test strategies such as test coverage
and test structure.
During the studied period, 586 IPs were produced, of which 460 were
using the wiki-based format (starting from January 2012). Surpris-
ingly, we also found 24 requirements without a corresponding IP. In
4 of these cases, the actual requirement was canceled without being
completed. In the remaining 20, there was other reasons for omitting
the proposal, such as the solution being described elsewhere or the
lead architect doing the implementation himself.
In 34 out of the 460 wiki-based IPs, the first code commit predated
the creation of the IP page, and in 15 cases, it happened on the same
day. This indicates that teams were prototyping (on a personal or
team-based branch) as part of writing the proposed solution. The IP
page contained various sections that were actively updated during
both the development and the system testing phases.
Related to code reviews, human reviewers should focus on content
rather than style. To meet this goal, as described in item C1, manda-
tory code formatting rules and static checks using the PMD and Find-
Bugs tools were introduced, causing the build to fail in case of viola-
tions. An earlier attempt in using advisory Sonar rules (post-commit,
sending feedback through email) proved unsuccessful, as most devel-
opers ignored these warnings.
The product started using advisory PMD checks in August 2012 and
made them mandatory in December 2012. The number of checked
rules was initially small but grew over time. At the end of the study,
it comprised 373 FindBugs, 155 built-in, and 7 application-specific
PMD rules, developed by a team architect to flag particular code
patterns as unwanted in the application code.
Starting in April 2012, a number of invariant-checking unit tests,
called “metatests,” were developed to give fast developer feedback on
the expected behavior of the produced code. The meta-tests scanned
the project classpath, performing static checks on classes that match
particular application-specific criteria. Examples of such tests are
“Request and Response classes shall have validation annotations on
all fields” and “All remote-invoked methods must have an audit log
annotation.”

3.5 The Anatomy of Software Craftsmanship 79

The first Gerrit review took place in June 2013. During the studied
period, 3,802 reviews took place, out of 54,637 total commits. One
interviewee indicated that the team used pair programming rather
than Gerrit-based reviews: “Our team made a decision not to use
Gerrit for review. Instead, we were pairing up, reviewing by sitting
close, working on the same task, and interacting with each other’s
code.”(Dev3)

• Analysis: Reviews can be used both to spread knowledge and to
enforce an architectural direction. However, to be effective, they
require motivated, knowledgeable, and accessible reviewers.
As evidenced in the findings, the solution review step did not preclude
coding. In over 10% of the found cases, the first line of feature
code (presumably a prototypical solution) predated even creating
an empty IP page. Instead, the solution review should focus on
whether the proposed solution aligns with the overall architecture and
direction of the product and sharing the concepts and the approved
design between different teams.
However, feedback frequency is also important—it is wasteful to
spend effort in a direction not aligned with the overall product archi-
tecture. Thus, architects should discuss the intended solution before
starting to write a formal IP.
Static review tools have the advantage that they are objective, consis-
tent, and persistent, but they are limited in scope and have the disad-
vantage of flagging false positives. The tool can function as a teach-
ing device by tailoring the tool error message or adding application-
specific rules. This studied case used the PMD tool to meet this
end.

F4 Learning from feedback

• Literature: Six books (B2, B3, B6, B7, B8, and B9) report on the
importance of learning from received feedback, with book B6 stating
that useful feedback needs to be possible to act upon.
Papers P3, P5, and P11 state the importance of learning through fast
feedback loops and ongoing move-testing-experiments. As discussed
in item C5, this is also intimately coupled with a culture of learning.

• Empirical findings: Five interviewees mention software develop-
ment as a learning exercise and highlight reviews as a tool to share

80 Towards an Anatomy of Software Craftsmanship

knowledge and get feedback, not block development. One intervie-
wee reflects on the importance of learning from customer feedback:
“[reacting to defect reports by]. . . taking a step back, and analyze:
‘This was an area that the customers were into. . . Are there more
black spots like that?’”(Test1)
To a large extent, the practices in item C5, being focused on learn-
ing, also apply here. The TA and QA roles (see C3, A1) were also
expected to guide their team members via regular feedback and share
experiences across teams.

• Analysis: By focusing on the learning experience of software devel-
opment and striving to use feedback (whether automated or manual)
to learn new and better development practices, it can be argued
that the organization as a whole prioritizes learning in a structured
way. This is also exemplified by the Lean principle of Amplify learn-
ing [106].

F5 Continuous integration and tests

• Literature: As stated by Brooks in his commentary to the 20th
anniversary of the original publication of B1, technological progress
has led to that “[Microsoft] rebuild the developing system every night
[and run the test cases]” [17]. These days, when 25 more years have
passed, the nightly runs have been replaced with on-demand-builds,
which run after each check-in. The importance of this evolution is
stated in eight of the studied books, and papers P3, P5, P9, and
P11 also discuss the benefits of continuous integration and regression
testing for software craftsmanship.

• Empirical findings: Automated build tools, first Hudson, then
Jenkins, were used since the inception, including mandatory test-
ing phases following the compilation and building of the software.
The organization relied on personal responsibility, with code signing
using personal certificates (see item C5), although the release build-
ing process was highly automated using build tool plugins, enforcing
rules about tagging and versioning of artifacts and dependencies.
As seen in Figure 3.5 (see item D2), the amount of test code soon
eclipsed the amount of production code, as the number of test cases
kept growing along with the product functionality. Initially, the test
suite was executed sequentially, in a monolithic fashion. Later this

3.5 The Anatomy of Software Craftsmanship 81

was broken down into many parallel tasks, each running towards an
isolated System Under Test (SUT), to decrease feedback latency.
The management (booking, releasing, reinstalling) of these systems
was handled by an own-developed test-host installation and reser-
vation system, utilizing the SUT to the highest possible degree. At
the end of the study, each commit was triggering up to 181 parallel
integration test tasks.
In some circumstances, concurrency issues (e.g., threading) caused
tests to fail sporadically (flaky tests). One such example was related
to alarm sending and logging. The first naïve solution by individual
developers was to add sleep statements into the flaky test case, delay-
ing the test execution by a fixed amount of time. In addition to being
wasteful of resources (as the test host was not performing any use-
ful tests, delaying feedback), this also caused additional instability,
as the required delay would be dependent on the CPU and network
load on the physical machine running the virtual machine under test.
After discussing in the TA group (see item C3), a senior developer
made a special “test helper” using barrier synchronization to solve
the instability. Further test helpers solved most causes of instability.
The remainder (e.g., due to dependencies on manipulating features
in complex third-party software) were relegated to nightly runs when
the test environment was less used and more stable.
Between December 2010 and December 2016, the team made 721
candidate releases of the main product. Of these, 248 turned into
sharp releases (where 36 were major feature releases, and the rest
was smaller defect corrections). On average, this amounts to 10.0
candidates and 3.4 sharp releases per month. Between March and
December 2016, the continuous integration environment made, on
average, 1428.6 builds per month on the master branch (not including
feature branch builds).

• Analysis: Many authors can testify to the utility of Continuous
Integration. However, running the tests is not enough; the organi-
zation must also act on the feedback provided by the test, including
fixing errors, unstable tests, and focusing on keeping the feedback
cycle time reasonable. The studied organization strove to shorten
the feedback loops for the integration tests to give relevant feedback
as soon as possible. Test case structure was also regularly discussed
in the QA forum (item C3 and C4).

82 Towards an Anatomy of Software Craftsmanship

Making frequent release candidates and releases means that manual
intervention in the release process needs to be kept to a minimum.
Still, the organization valued the accountability given by personal
code signing of individual artifacts, release candidates, and sharp re-
leases. One benefit of frequent releases is that there is no “big-bang
effect” when making the sharp release. By that time, recurrent Con-
tinuous Integration jobs should already have verified the constituent
components and the functional difference since the last release should
be small and manageable.

Summary: As stated in the introduction, feedback loops have been at
the core of software development for at least 50 years. However, the tools and
frequency of the feedback have changed over the years. The studied organization
not only used Continuous Integration practices, but also worked with them,
striving to optimize, and get faster feedback.

Similarly, realizing the cost and scarcity of human feedback, the organization
strove to utilize review tools, such as static code review, invariant-checking unit
tests, and web-based review tools such as Gerrit. There was a mandatory design
review step to spread knowledge and align directions, but this did not prevent
teams from prototyping before describing their first proposed solution.

We also see evidence that in some cases, the agreed process (e.g., reviews,
solution descriptions) was not followed. This indicates that the organization
tolerated deviations from the process, as long as the perceived benefits of the
deviation outweighed the perceived costs (e.g., the lack of competence spread
or the risk of lower quality).

3.6 Discussion and Implications

3.6.1 The principles and practices of software craftsman-
ship — in literature and in our case study

Tables 3.6, 3.8, 3.10, and 3.11 illustrate the overlaps between the literature and
the presented anatomy of craftsmanship. Among the most notable discrepancies
and expansions, we consider the following.

A key architectural principle in our anatomy is the A1 Participating Soft-
ware Architects, i.e., architects need to participate in day-to-day software de-
velopment. This extends the principles from the literature of passionate, skilled
technical leaders who lead empowered teams both practically and concretely.

3.6 Discussion and Implications 83

We highlight the decision of A3.2 Judicious use of third-party products as a key
practice to follow when setting architectural direction. In addition to functional
requirements, quality requirements such as testability and upgradeability must
be considered when choosing software components. We note that the archi-
tectural direction should be exemplified via concrete, testable A3.3 Common
application patterns, rather than comprehensive documentation.

Our results also emphasize that tests should be structured in D2 layers,
and every test case should be D2.1 stable and independent to reduce dependen-
cies and enable faster fault isolation and correction. Tests were kept in focus
through the principle of D2.3 Test-focused Development, with tests developed
close to the production code, using D2.3.1 Pairing and D2.3.2 Test-Driven
Development. We also highlight that the relative lack of comprehensive design
documentation was alleviated by having a test base of D2.4 expressive tests,
with a simple structure, which also served asD3 Design documentation, together
with a collaboratively edited wiki system.

An Agile setting expects teams to be self-organizing, without structure
imposed by external forces. However, this freedom should be supported by
C2.2 Clear roles and responsibilities and sharedC2.3 Definition of Done (DoD)
criteria, which help all participants in the organization know what to expect,
and when to expect it. This is not to say that external forces have to appoint
these roles and check on the DoD, only that the team needs to organize so
that the roles are set, and the DoD criteria are fulfilled. To gain trust between
different stakeholders and to allow corrective actions, C4 Visibility is essential,
including backlog, issues, technical debt, and C4.2 Visible status. Another key
practice is C5 Accountability, affecting both transparency and C5.2 Reputation.

Like the agile principles, our vision of craftsmanship also focuses on feedback
loops, such as F1.2 Frequent demos. The practice of F3.3 Solution review is
highlighted to spread knowledge between teams and to ensure that the proposed
solution aligns with the architectural direction. It is important to note that,
when needed, the proposed solution should be vetted using prototypes and real
test cases before the review takes place. The continuous learning organization
values F4 Learning from feedback and sees this as positive. Defect reports can be
seen as both good and bad. While reoccurring defects are clearly bad practice,
the first occurrence of a particular issue is judged from case to case. Metrics
are used accordingly.

84 Towards an Anatomy of Software Craftsmanship

3.6.2 What are the consequences of applying the software
craftsmanship principles and practices in real life?

Based on the studied case, we found several examples of how software crafts-
manship is embodied in practice and the consequences it brings:

• Developing in a D2.3 test-focused way does allow production code to
be refactored and shaped into a clear representation. However, as the
product accumulates features, the test codebase will grow faster than the
production code, more so for the integration test code than for the unit test
code. Therefore, it is important toD2 test at several layers and constantly
work with the test code, which is as essential to keep C2.1 clean as the
production code. Regarding A3.4 refactorings, the studied organization
made on average 16.8% refactoring commits during six years, excluding
refactorings made as part of regular features.

• The D2 test code serves two purposes — first, it should verify that the
system still behaves as it used to do, and second, it should be D3.1 read-
able as a description of what the system does. In order to meet these
goals, the tests need to be F5 frequently executed, and failures or broken
builds need to be quickly F4 acted upon. In some cases, organizational
support is needed to enforce these norms, and C3.1 Cross-team forums
can be used to solve this efficiently.

• There is a trade-off to be made related to verification efficiency and cor-
rectly mimicking a deployed system. Solutions to D2.1 unstable test cases
can include re-architecting or adding helper functions to make them more
stable, increasing testability and trust in the test suite, at the cost of al-
lowing deviations from a production system. As these added functions
will not be part of the end-to-end delivery, it is important to keep them
A2.1 architecturally isolated from the object under test. Later test phases,
such as system testing, should then test the product from a black-box per-
spective.

• A1 Software architects and A1.2 senior developers play important roles
in architectural direction and forming a C2 common professional culture.
In the studied case, the creation of a C shared professional culture was
facilitated both by relocating the remote teams to the primary site for a
few months, to learn the product and the development process and by the
C6.2 structured exercises (katas) used in order to C6.3 teach newcomers
the preferred way of developing new features.

3.6 Discussion and Implications 85

• F2 Frequent feedback is important, both from tools, artifacts, and other
stakeholders, such as F1 requirement owners, F3.1 other peers, verification
engineers, or target installations.

• All interviewees mention the structured, down-to-earth, practicalC6.2 kata
exercises as important tools to learn the development process and the
preferred way of developing the product, particularly in a group setting.
However, there are few indications in the studied case that the katas were
used as deliberate practice.

• While the organization advocated and the kata exercises taughtD2.3.2 Test-
Driven Development, the organization also realized that TDD could be a
hard technique to master. Nevertheless, tests and verification were kept in
D2.3 focus by keeping the development team responsible for automating
functional test cases and keeping the manual test cases to a bare minimum.

• Having a C1 common toolchain and striving for C6 mastery of this
toolchain is yet another aspect of a common professional culture. Still,
this does not mean that the tools should be static. In the studied case,
the organization changed tools several times to be more productive. In
some cases, the switch was “abrupt” (e.g., version control and build tools),
and in some cases, the switch was “gradual” (e.g., supported IDE). The
organization should be prepared to C6.3 teach members the new tools,
using guidelines, seminars, and D2.3.1 pairing.

We also found instances where the studied organization fell short of the
espoused principles—for instance, regarding C6.2 kata exercises being used
solely for new developers, in an individual and isolated setting; a few features
being developed without the requested F3.3 solution review; and there were
certain teams where D2.3.2 pairing and C6.3 mentoring worked better than in
others. In this regard, the software craftsmanship principles and practices can
be seen more like guiding lights than absolute truths. However, we still think it
is worthwhile to study them more.

3.6.3 Software Craftsmanship vs. Agile Software Devel-
opment

Following the organization in paper P5 [82], here we compare, in light of the
findings from this study, the principles from the Software Craftsmanship Mani-
festo with the principles in the Agile Manifesto.

86 Towards an Anatomy of Software Craftsmanship

Well-crafted software vs. Working software

Software craftsmanship focuses on well-crafted software, while agile software
development promotes delivering software as quickly as possible. Therefore,
craftsmanship goes beyond project activities reported as the most frequently
used agile practices, e.g., standup meeting, backlog, sprint/iterations, and sprint
planning [135]. According to the State of Agile Report [26], companies applying
agile practices rarely report on practices such as F5 Continuous integration,
D2.3.1 Pairing, D2.2 Automated testing, D2.3.2 Test-Driven Development,
and A3.4 Refactoring. The results of the SLR, together with the findings of
our case study, suggest that craftsmanship focuses on offering agile organiza-
tions more down-to-earth, technical practices to improve long term stability and
quality, e.g., A2.1 Isolated and Layered Architecture or the use of A3.1 Mini-
malistic Frameworks.

Steadily adding value vs. Responding to change

Rather than only quickly reacting to changes, craftspeople are expected to also
come up with their own improvements, such as A3.4 refactorings or improve-
ments in the overall production (e.g., tools, such as optimizing the C5 continu-
ous integration environment or D2.2 automated testing). This is to make sure
that F5.1 frequent releases and F2 short feedback loops prevent degradation of
the A architecture, which would limit the ability to continuously and steadily
add value.

A review by Kupiainen et al. [74] indicates that the metric with the strongest
influence in Agile and Lean contexts was velocity, followed by effort estimate and
customer satisfaction. However, we argue that not only velocity but also clean
and bug-free code matters. The same authors report that metric information
was broadcast in hallways to motivate people to react faster to problems. Thus,
our C4.2.1 information radiator practice was also used to influence behavior
here.

Community of professionals vs. Individuals and interactions

Emphasizing the community of professionals over individuals implies that crafts-
people would be expected to help each other grow through C6.3 mentoring,
constructive feedback, and experience sharing [83].

Our literature and case study results confirm the importance of a C2 shared
professional culture and F feedback as essential themes. Quick F2 feedback
loops enable organizations to D1 develop incrementally, concentrating on small

3.6 Discussion and Implications 87

deliverables with predictable lead-time. This is crucial for keeping a sustainable
pace adding value, and, if needed, to “fail fast.” The shared professional culture
might impact the ability of the organizations to build up a cross-site sense
of belonging and foster the creation of shared ways of working in distributed
environments.

The growth of open-source communities and the sponsoring and develop-
ment of open-source software by commercial vendors can also be viewed as
emphasizing software development communities.

Productive partnerships vs. Customer collaboration

While Agile focuses on interactions and collaboration with customers, the crafts-
manship approach takes a more long-term, strategic view. For craftspeople, the
produced artifacts, knowledge, and learning become part of the organizational
knowledge and strengthens the ability to respond and assimilate changes. By
being C5 accountable and practicing C4 visibility and transparency, craftsman-
ship brings a balancing force to customer-focused agile practices.

In the studied case, customer collaboration was implemented through cus-
tomer proxies and in the “Internal live customer” phase, starting after less than
a year of development. This proved successful in sharpening the development
teams and spreading knowledge about the product and its environment to in-
tegration engineers, which helped smoothen the transition to external customer
deployments. After deployment to external customers, the requirement inflow
increased, but the organization had already achieved a smooth development
process and could keep up with demands without compromising quality.

3.6.4 Software Craftsmanship vs. Lean Software Devel-
opment

In this subsection, we compare our anatomy, and the case study results, with the
seven principles of Lean Software Development, outlined by Poppendieck and Pop-
pendieck in [106].

• Eliminate waste can be seen as a core trait also in Software Craftsmanship.
By focusing on the Steadily adding of value, and principles that encourage
that, a responsible craftsman tries to eliminate waste from any processes
or tasks.

88 Towards an Anatomy of Software Craftsmanship

• Amplify learning also lies at the core of craftsmanship, fostering a C5 Cul-
ture of learning via C6.3 Mentoring and C6.2 Deliberate practice, and
F4 Learning from feedback.

• Decide as late as possible is a way to adjust your design up until the last
responsible moment, which is core in D1 Incremental development, where
F1.1.2 Requirement changes are seen as a comparative advantage.

• Deliver as fast as possible puts value on getting real, actionable F Feed-
back, on many levels, both via F3 Reviews and F5 Continuous integra-
tion and tests, using F2 Short feedback loops.

• Empower the team is also at the core of craftsmanship, where the archi-
tecture invites A1.3 Empowerment, and the professional culture values
C4 Visibility and accountability.

• Build integrity in has a direct parallel in the D Iterative design, develop-
ment, and verification, where much of the focus is on layered verification
in the D2 Testing pyramid, and that the tests should be D3.1 usable and
readable as documentation of a running system.

• See the whole is arguably the focus of many craftsmanship principles, both
from anA Value-focused architecture theme to the Productive partnerships
envisioned in the manifesto.

While there are similarities between the lead architect in the studied product
and Poppendieck’s chief engineer principle [106], there are also differences. The
program planning and budgeting were performed by different roles in the stud-
ied case, outside the scope of this article. The lead software architect focused
solely on the software and its structure to enable efficient development of fea-
tures valued by customers while still meeting the required quality requirements.
There were also strategic product managers and system managers dealing with
customer requirements and strategic directions for the product, also outside the
scope of this article.

3.6.5 Returning to the Software Craftsmanship Manifesto
Looking at the manifesto13 values through the lens of our anatomy, we find the
following:

13http://manifesto.softwarecraftsmanship.org/

3.6 Discussion and Implications 89

• “As aspiring Software Craftsmen we are raising the bar of professional soft-
ware development by practicing it and helping others learn the craft.” In
the first line of the manifesto, the authors explicitly value the C6 Culture
of learning, and the F4 Learning from feedback. The need for constant
practice also aligns with A1 Participating Software Architects. Although
F3 Reviews are not explicitly mentioned, this is one example of a setting
enabling experience sharing, either automated through static review tools
or manual, via solution or code review.

• “Not only working software but also well-crafted software” as a state-
ment does not define what distinguishes the two classes of software. Our
anatomy considers well-crafted software as being composed of A3 Clean,
minimalistic code, which is D1 incrementally developed, during constant
A3.4 Refactoring. The architecture enables A2.1 isolated features, us-
ing layers, and features are developed with D2 layered testing in mind.
Functional tests are written by the D1.2 team that develops the feature,
so that they are D3.1 readable as documentation.

• “Not only responding to change but also steadily adding value” focuses on
the longer-term perspective and the ability to add value to the software in a
predictable manner continually. To meet this goal, in addition to the well-
craftedness mentioned above, the A architecture should focus on helping
value-creation, making it easy to validate changes through F5.1 Frequent
release candidates and through F5 Continuous integration. To keep track
of the current state of the product and the project, C4 Visibility and
transparency are important, as is the management of C4.1.1 Technical
debt.

• “Not only individuals and interactions, but also a community of profes-
sionals” emphasizes the community aspect of software development, and
many items in the anatomy focus on a C Shared professional culture. Im-
portant aspects of a C2 Common culture include fostering C2.1 caring
for your artifacts, having a shared sense of C2.4 Pride, and C2.2 Clear
roles and responsibilities. To balance the pride, it is also important to keep
C5 Accountability and C5.1 Humility, and craftspeople would do well to
manage their C5.2 Reputation.

• “Not only customer collaboration, but also productive partnerships” again
focus on the longer-term view, where C5.2 Reputation is at stake. Our
anatomy mainly focuses on the requirement formalization’s collaborative

90 Towards an Anatomy of Software Craftsmanship

aspects, using the F1 On-site customer approach and F1.1.2 Collabo-
rative requirements elicitation, by constant communication between the
design team and the requirement owner (customer proxy). Likewise, veri-
fication is a collaborative endeavor, where D1.2 teams take responsibility
for delivering functionally verified features.

To sum up, our anatomy makes no references to the “lone cowboy pro-
grammer” craftsman stereotype mentioned by Boehm in P14 [13]. Instead, it
emphasizes the community aspects of modern software development, the im-
portance of mentoring and tutoring newcomers to the field, and the need for
constant learning in software development. While there are undoubtedly pro-
grammers that prefer solitude and would rather not communicate with others,
our anatomy concretizes most of the manifesto ideas, bringing evidence on how
some of the craftsmanship principles can work in practice. It also emphasizes
the need for senior developers to engage in teaching and mentoring, in addi-
tion to behavioral rules to foster a shared culture of learning and professional
development.

To be fair, our anatomy does not emphasize the linear progression of ap-
prentice, journeyman, and master outlined by McBreen in B2 [91]. Rather than
designating individuals into specific labeled categories, the anatomy emphasizes
everyone’s responsibility to contribute to a culture of learning, caring for the
codebase and the architecture. Naturally, the more senior developers would take
a more leading approach, such as in the cross-team forums. Likewise, leading
developers were cognizant of the importance of a shared professional culture and
used both team relocation and kata exercises to try to instill a common way of
working to new project members, regardless of their prior experience.

3.7 Validity
In this section, we discuss the threats to validity from four different angles:
construct validity, internal validity, external validity and reliability [142].

Construct Validity deals with whether the studied measures really reflect
the constructs that the researcher has in mind and what is stated in the research
questions, and the ability of the metrics to informs about the concept [109].

For the qualitative data, construct validity was enhanced by the two addi-
tional authors reviewing the flexible interview protocol, making clarifications
based on this feedback. We also presented an intermediate version of the
anatomy to the studied organization, after analysing the interview data, and
received valuable feedback.

3.7 Validity 91

Much of the quantitative data comes from Git logs, and using such infor-
mation to illustrate: (i) the proportion of development activities (e.g., feature
development or refactoring); (ii) the iterative nature of the development; and
(iii) the usage of layered testing; has some risks that can challenge the reliability
of the results.

In particular, when dealing with the proportion of development activities,
we analyzed individual commit messages and relied on the organization’s strict
commit tagging policy. Developers had to tag each individual commit with
a code depending on the activities they were carrying out. Only 0.2% of the
commits were not properly tagged. We tried to mitigate this threat to construct
validity by defining a metric on data that was created with the same objective:
to be able to identify the development activities. During the studied period,
the organization had no organizational goals associated with this metric (e.g.,
rewards associated to refactorings or bug fixes). Had such goals been used, this
metric would not have been reliable, as developers could have been expected to
change behaviour to meet such goals.

For analyzing the adherence to incremental development, we use the evo-
lution of the codebase over time, for the major types of source code. One of
the main threats to validity in this case is whether the languages (i.e., Java,
XML and Scala) are comparable. As XML is much more verbose than Java,
it will grow faster, but the main usage in this analysis is not the growth speed
itself, but the fact that they grow together in at sustainable pace. In a non-
incremental development scenario, we would expect the production code and
the unit test code to grow from the start of the project until the start of the
development of integration tests, where these two will suffer a sudden decline
in their growth and the focus would move to integration. However in this case
the different types of code grow linearly, with slightly different speeds.

Finally, regarding our proposed construct of a testing pyramid and layered
testing, we use both the fact that developers state that automated tests were
important, and the volume and ratio of test code versus production code. Our
proposed metrics (lines of code and the ratio of tests versus production code) say
nothing about the quality of said code, but they do illustrate that the different
classes of code grew over time, and as the product grew more feature-rich, the
amount of different test code grew alongside the production code, although at
different speeds. We argue that this shows that in this product, developers took
care to layer their tests into different categories of tests and that this behavior
was consistent throughout the studied period.

An important aspect to consider when using this data source is the branching
pattern and how commits were merged or rebased. In the Git version control

92 Towards an Anatomy of Software Craftsmanship

system, authors may “squash” commits, perhaps performed by different authors
at different times, into one new commit, discarding the constituent commits.
This was not an approved practice as the studied organization valued seeing the
individual commits as they were written and pushed to the central repository.

Most development took place in a single “master” branch for the duration
of the study. Features developed in other branches were eventually introduced
into the master branch, typically via the Git rebase function, keeping a linear
history by rewriting commits. However, during rewriting, the original author
information, including the commit date, is preserved, even if the commits are
reordered in the git log. This allows statistics based on Git dates to be reliable
data sources, as the commit date reflected when the actual code was changed,
not when it was introduced into the master branch.

Internal Validity deals with whether there might be other, non-studied
factors that could explain some of the findings.

We used the mixed-methods approach of triangulation to increase internal
validity. We used Google Scholar to search for papers to form a start set. As
we only found 4 relevant papers, we added 5 additional based on experience.
This personal bias could threaten internal validity. However, we believe that
its impact is minimal after performing four forward and backward snowballing
iterations. We have screened 478 references, 782 citations, and 146 books during
these iterations. Moreover, Mourão et al. have shown that combining the
database search with forward and backward snowballing improves the precision
and recall of the literature review [96].

Where possible, we used both quantitative and qualitative data sources.
However, there might still be other, non-studied, explaining factors that impact
the results. We are aware that the studied development project did not adopt
all software craftsmanship principles that we identified in the literature. This
remains a threat to internal validity of our work.

External Validity concerns the extent to which it is possible to general-
ize findings and whether the findings are of interest to people outside of the
investigated case.

One of the five misunderstandings about case study research is the inability
to generalize from a single case [42]. Following Flyvbjerg, we have focused
on analytic generalization rather than statistical generalization by comparing
the characteristics of the case to a possible target and presenting case-specific
characteristics, as much as confidentiality concerns allowed.

We looked outside the studied case by reviewing other literature for findings
or themes to increase external validity.

3.8 Conclusions and Future Work 93

This buttressing is documented in the SLR section of the article, and the as-
sociated data appear as references throughout the results and analysis sections.
However, it must be acknowledged that this buttressing is based on limited em-
pirical evidence. Additionally, the results here are only circumscribed to the
analyzed context. More studies in other systems and other organizations are
needed to better understand the effect that craftsmanship principles might have
on the developed product, the development process, and the organization.

Reliability concerns whether the data and analyses are dependent on the
specific researchers, and this is a significant threat to validity for this study, as
the first author was part of the studied product development during the whole
studied period. To increase reliability, the second and third authors were used
in a supporting role, with at least one of them being active participants in all
interviews. The first author transcribed all recorded interviews. The transcripts
were reviewed by the second and third authors, who separately coded three
interviews each, for comparison with the first author’s codes, who coded all
interviews.

The interviews, conducted between July 2018 and January 2019, used a
convenience sample of participants, focusing on including many different aspects,
illustrating the concepts and principles used in the development process. Two
interviewees were from the outsourced site, and two were women. The lead
architect was interviewed separately by the second and third authors, as he had
worked closely together with the first author during the studied period.

A threat to reliability is that the interviews took place some years after
the actual studied events. In addition to memory errors in the interviewed
participants, it also meant that it was hard to reach persons who were part of
the product for a shorter time. Thus, the views of such “short-lived” participants
may have been different than the interviewees.

We strove to reduce memory errors by seeking additional data in quantitative
sources (VCS logs, wikis, requirement tools) using archival analysis whenever
possible.

3.8 Conclusions and Future Work

3.8.1 Conclusions
Regarding RQ1, how Software Craftsmanship has been conceptualized in liter-
ature, although the principles have a long history in gray literature, we found
comparatively few published research articles. In our SLR, we could find only

94 Towards an Anatomy of Software Craftsmanship

18 papers discussing the principles to some extent, see Table 3.4. Based on
these papers, we found 11 books, of which seven were new to us before starting
this study.

In order to conceptualize the findings, and to illustrate which of these prin-
ciples and practices that we can see in our studied case (RQ2), we drew the
anatomy map, comprising of four key themes, with 17 principles and 47 prac-
tices; see Figure 3.3 and Table 3.6, 3.8, 3.10 and 3.11.

In answering RQ3, what consequences applying the practices bring, we drew
examples from our studied case, using both quantitative and qualitative data.
Most of these principles align well with core Agile and Lean principles but place
a higher weight on the technical practices.

Although the Agile and Lean principles seem quite well-researched, the Soft-
ware Craftsmanship principles seem to warrant more systematic studies by the
research community.

3.8.2 Future Work
This study was performed in a particular setting, having quick feedback cycles
from customers with rapidly changing requirements. Whether the principles
still apply in other settings, such as in situations with more static and stable
requirements, or different organizations, remains to be seen.

In future studies, we intend to study how these practices have affected the
defect statistics, internal and external quality, and how the principles have been
applied as the organization has changed. We also plan to explore the relation-
ships between Agile and Lean software development and software craftsmanship.
We are aware that both Agile and Lean software development have aspects sim-
ilar to, and overlapping with, software craftsmanship. Thus, we would like to
explore this in detail in subsequent publications.

Chapter 4

The Hidden Cost of
Backward Compatibility:
When Deprecation Turns
into Technical Debt

This chapter is based on the following paper:
A. Sundelin, J. Gonzalez-Huerta, and K. Wnuk, “The hidden cost of back-

ward compatibility: When deprecation turns into technical debt - An experience
report,” in Proceedings - 2020 IEEE/ACM International Conference on Techni-
cal Debt, TechDebt 2020, 2020, isbn: 978-1450379601. doi: 10.1145/3387906.
3388629

Abstract
Context The micro-services architectural pattern advocates for the partition-
ing of functionality into loosely coupled services, which should be backward
compatible, to enable independent upgrades. Deprecation is commonly used as
a tool to manage multiple versions of methods or services. However, deprecation
carries a cost in that tests might be duplicated and might rely on services that
have become deprecated over time.

https://doi.org/10.1145/3387906.3388629
https://doi.org/10.1145/3387906.3388629

96
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

Objective Using the terms of the Technical Debt metaphor, we explore the
consequences of deprecation, and how it has affected the test base during seven
years.

Method We take an exploratory approach, reporting on experiences found
before and after servicing parts of the incurred Technical Debt. We mine code
repositories and validate our findings with experienced developers.

Results We found that the growth of deprecation debt varied a lot. Some
services experienced substantial growth, but most did not. Unit tests, where
deprecation is visible in the developers’ tools, were much less affected than
integration tests, which lack such visualization mechanisms. While servicing
debt of 121 out of 285 deprecated services, we discovered that up to 29% of the
spent effort could be attributed to accrued interest. However, this is an upper
bound; there could be less impact, depending on whether scripting could be
used to service the debt or not.

Conclusion This paper illustrates that integration tests can be viewed as
a debt from the perspective of deprecated services. While the pattern was that
deprecated services (debt principal) experienced no or little accrued interest,
some, highly used, services experienced a lot, particularly during stressful times.
Java-based tests, where deprecation is visible in the IDE, did not experience a
similar pattern of increasing debt. We postulate that deprecation debt should
be kept visible, either using developer tools or statistical reports.

4.1 Introduction
The current trend in software engineering is to split functionality into small,
focused, loosely coupled services, often called microservices [45], using the Dev-
Ops moniker [5]. To achieve loose coupling, services should be independently
developed. Zimmermann et al. [144] highlight that continuous upgrade-ability
and backward compatibility are necessary for achieving loose coupling because
they allow clients to upgrade to newer available services at will, irrespective of
how the service is upgraded.

However, we have not found any study that explores the converse problem—
the importance of removing unused services, and how to visualize whether or
not the clients use “the most current” version of a service.

Exposing several versions of the same service carries a cost, both from a
development and verification point of view. The test base can be seen as “the
first client” of a service, as it is the first code that exercises the service in order
to verify the expected behavior.

4.2 Related Work 97

This paper describes the impact of service deprecation on an existing test
base, and the effect that this has had on a product over the course of seven
years. We take an exploratory approach and mine the Git repository of the
studied product for data related to the exposed services.

A core principle used when developing new versions of the services in the
studied system has been backward compatibility. A new version of service should
behave identical to the currently existing version, though it might accept other
types of data, or return more or less data, based on the given input. Deprecation
markers have been used to flag which versions to avoid. The studied system
contains one non-deprecated version and N (≥ 0) other deprecated versions of
any published service.

The paper is structured as follows: In Section 4.2, we cover the related work
in the area. In Section 4.3, we report on the research methodology, and relate
to the background of the studied system. In Section 4.4, we report the results
found during the study. In Section 4.5, we discuss the threats to validity, and
in Section 4.6, we draw conclusions and elaborate on the implications for the
research area and industry in general.

4.2 Related Work
Deprecation is a way to signal to API consumers that there are other, more
up-to-date ways to perform a given task. Morgenthaler [4], views deprecation
as software aging made manifest, and maps this directly to technical debt.

A complication is that very often, deprecated methods or services remain
for very long times in APIs. As an example, the Java Standard Library class
java.util.Date has contained four deprecated constructors and 18 deprecated
methods since the release of Java 1.1 in 1997. Today (in Java 121), these
deprecated methods and constructors are still present, together with two non-
deprecated constructors and 11 non-deprecated public methods.

Sawant et al. [117] studied how developers (API consumers) in open-source
projects react to deprecation events in popular Java APIs. The overall con-
clusion is that developers seldom react at all, and rarely keep up with API
evolution. A weakness of this study is that it focuses only on open-source
projects. In [118], the same authors, apart from increasing the number of stud-
ied projects, also conducted a survey, trying to reach out to developers on pro-
prietary projects. The conclusion in this paper is similar to the prior study,
and respondents point to the perceived complexity and time consumption as

1https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/util/Date.html

98
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

the main reasons for not upgrading to the latest version of the APIs and keep
using deprecated versions.

The same finding was made in a study by Kula et al. [73], who investigate
the efforts of library migration covering over 4600 GitHub software projects
and 2700 library dependencies. Results from this study show that 81.5% of the
projects kept their outdated dependencies, citing unawareness, extra effort, and
added responsibility.

As of Java 9, the deprecated annotation has been enhanced2 with an at-
tribute indicating that a construct is deprecated with the intent to remove it in
a future version. The motivation for this is that the deprecation marker ended
up being used with different purposes, and the theory is that if developers re-
alize that a construct is deprecated with the intent to be removed in a future
release, they are more likely to update. As part of this work, there was also
additional tools developed, available as part of the Java ecosystem.

Snipes and Ramaswamy [126] proposed a sizing model for managing technical
debt related to the deprecation of third-party software components. The model,
based on a sigmoid curve, takes into account the lines of code affected, how much
(as a percentage) of the API that is deprecated, and the age (in years, with a
cutoff proposed to 5 years) of the software component. The authors illustrate
the model using Monte-Carlo simulation.

Curtis et al. [34], proposed estimating the principal amount of technical
debt based on static code analysis tools and a parameterized formula. The
authors illustrate the model by using the tool and formula on 700 applications,
comprising 357 MLOC in various languages, from 158 vendors. The article does
not state whether only production code was analyzed, or if test code also was
included in the metric. A conclusion is that the proposed formula is highly
sensitive to the given parameters. The authors illustrate this with three sets of
parameter values.

Codabux and Williams [24], studied an organization adopting Agile practices
and focused partially on the management of technical debt. Research questions
center on characterizations, consequences on the development process, address-
ing, and prioritization of technical debt. Test debt in the study relates mostly
to missing tests and lacking automation of tests.

Kruchten et al. [72], relate to Testing Debt in three different ways: “Imper-
fection or suboptimal design and coding of tests”, “Misalignment between the
tests and the actual code” and “Challenges of SaaS contexts”. Tests, especially
when automated, are also code and need to be designed just like production

2https://openjdk.java.net/jeps/277

4.3 Research Methodology 99

code. When the purpose is unclear, time is spent trying to figure out whether
failures originate from the tests or the production code.

4.3 Research Methodology
We take an exploratory approach, utilizing mixed methods and triangulation
to elicit experiences from the studied organization. As the studied product has
been developed for nine years (of which seven in live operation), a complication
is that many developers are no longer available for feedback on conclusions.
When possible, we try to confirm and contrast our findings with experienced
developers, with a long track record in the product (a handful of which has been
with the product since the start). We mined the version control system (Git
logs), where all changes to files are stored.

The developers of the studied system took principled decisions related to the
support of multiple versions of exposed services:

• New versions are introduced when the existing service cannot accommo-
date newly requested features, but the core function is the same.

• When introducing a new service version, all old service versions are dep-
recated. This leads to each service having exactly one version that is
“current.”

• When a version is deprecated, it remains in the product, and existing test
cases continue to use it. New test cases are written for the new version,
but old ones are not converted, even if they use the old, deprecated version
of the service.

• Removing a service version is done as a planned task, based on extensive
communication with impacted stakeholders and requires updates to all
systems (including test cases that might use it for other purposes than
explicitly testing the service version itself).

4.3.1 Research Questions
Based on the above principles, we formulate the following four research ques-
tions:

• RQ1 How has the decision to avoid converting the existing test base when
deprecating a service version contributed to the spread of Technical Debt?

100
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

• RQ2 If there is a contribution to Technical Debt in the test code base,
are there any differences between the Java-based files (where deprecation
is visible in the IDE) and the non-Java-based text files (where no such
feedback is visible)?

• RQ3 How has the growth in deprecated service version usage contributed
to the spread of Technical Debt?

• RQ4 What is the likely cause of the spreading of deprecation debt?

4.3.2 Case Description
The system under study forms part of a FinTech global product that enables
access to financial services via mobile phones and the Internet. It is typically
installed in a high-availability configuration, with geographical redundancy, to
meet service uptime requirements. Starting in 2013, the system today serves
tens of millions of users in around 15 installations around the world, each inte-
grating with several hundred different other systems. The system contains sev-
eral transaction-intensive applications, with incoming and outgoing interfaces
and persistence layers in the form of different databases. As it is a financial
application, security plays a dominant role.

Figure 4.1 illustrates the system and the role of different services and how
each service exposes different versions of requests and responses. Clients ex-
ternal to the system may choose to use any of the exposed service versions to
invoke a particular service.

The studied system was developed with test automation in mind, using dif-
ferent test strategies, such as unit testing, integration testing using public APIs,
and system testing by a different organization than the development teams. The
development has been conducted in an Agile manner, with frequent releases, and
incorporating core Agile practices, such as continuous integration and as short
feedback loops as is practical. Continuous Integration tools such as Jenkins,
giving fast feedback to developers on the quality of their product, has been used
during the whole development period.

The system exposes a set of HTTP-based services to the surrounding sys-
tems, using XML for marshalling and unmarshalling. As the number of clients
to the system is essentially unbounded (or at least unknown at design time),
backward compatibility on the protocol level has been an important factor in
the design of the system. For this purpose, protocol schemas were developed us-
ing XML Schema (XSD), and the system developers assumed that at least some
clients, possibly also security firewalls, would enforce strict validation of the

4.3 Research Methodology 101

Studied System

A v2.0A v1.0

Service A

B v1.0

Service B

Business model logic

Persistence

External client 1

Reqv1 Respv1

External client 2

Reqv2
Respv2

Service Versions

Services

(a) External client 2 uses service A in version v2.0 (request Reqv2 and response Respv2)
External client 1 has not yet upgraded, and is still using v1.0.

Figure 4.1: Schematic view of the studied system, exposing services in different
versions.

request and response messages against the corresponding schema. Due to the
compatibility principle, the number of versions of the same service has grown
over the years. Another principle has been that when developing a new ver-
sion of a service, all older versions are marked as deprecated, using the regular
Java deprecation mechanism (annotation and Javadoc). This information was
included in the product API documentation, which was generated from Javadoc.

As the system has been developed in Java, deprecation warnings appear
integrated into the IDE, such as Eclipse and IntelliJ IDEA. However, integration
test cases, interacting with the services via officially supported interfaces, such
as XML requests over HTTP, has been developed in a text-based language,
custom written for the application. This language is also specified in XML and
is executed via a custom runner.

102
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

The use of XML text is similar to text-based BDD3 languages, such as
Gherkin, but has proved hard to sustain for the 9000 unique test cases. Current
developers are unwilling to modify existing test cases, and express frustration at
the lack of IDE support for working with plain-text-based languages. This is in
contrast to the comparatively well-developed search and refactoring support in
IDEs such as Eclipse or IntelliJ IDEA. As the XML language lacks the depreca-
tion mechanism that is available in plain Java, there is no warning when using
a deprecated version of a service. Thus, the developer writing or maintaining
test cases lack feedback on whether or not this should be changed.

Figure 4.2 shows the evolution of the number of files of production code
(prod) and tests over the studied period. The combination of int.tc and int.setup
files contains the integration test files, with int.setup referring to the code used
for setup, tear-down, and utility functions used in integration test cases, whereas
int.tc refers to the actual code of the integration test cases. Unit refers to the
Java-based test code, typically in the form of unit tests.

0

3000

6000

9000

12000

2
0

1
2

−
q

1

2
0

1
2

−
q

2

2
0

1
2

−
q

3

2
0

1
2

−
q

4

2
0

1
3

−
q

1

2
0

1
3

−
q

2

2
0

1
3

−
q

3

2
0

1
3

−
q

4

2
0

1
4

−
q

1

2
0

1
4

−
q

2

2
0

1
4

−
q

3

2
0

1
4

−
q

4

2
0

1
5

−
q

1

2
0

1
5

−
q

2

2
0

1
5

−
q

3

2
0

1
5

−
q

4

2
0

1
6

−
q

1

2
0

1
6

−
q

2

2
0

1
6

−
q

3

2
0

1
6

−
q

4

2
0

1
7

−
q

1

2
0

1
7

−
q

2

2
0

1
7

−
q

3

2
0

1
7

−
q

4

2
0

1
8

−
q

1

2
0

1
8

−
q

2

2
0

1
8

−
q

3

2
0

1
8

−
q

4

2
0

1
9

−
q

1

2
0

1
9

−
q

2

2
0

1
9

−
q

3

2
0

1
9

−
q

4

quarter

n
u

m
b

e
r

o
f

fi
le

s

type int.setup int.tc prod unit

Figure 4.2: Production and test files per quarter

3https://dannorth.net/introducing-bdd/

4.3 Research Methodology 103

Table 4.1: Average lines per file across quarters.

Type x̄ σ x̂ first last min max
prod 73.4 3.6 73.8 74.2 88.4 66.8 88.4
unittest 172.3 24.4 181.8 139.6 234.5 133.1 234.5
int.tc 155.0 10.3 154.8 187.2 148.5 135.4 187.1
int.setup 83.4 23.1 82.8 117.8 61.5 61.5 135.6

The Java-based files, both production and unit tests, show steady growth
over the studied quarters. Employing standard linear regression, we see that
production files grow with 330 files/quarter, p-value less than 2 ∗ 10−16, and
adjusted R2 of 0.97. Likewise, the unit tests grow with 128 files/quarter, p-
value less than 2 ∗ 10−16, and adjusted R2 of 0.99.

For the integration test cases (int.tc), the picture is somewhat different.
The period up to and including Q4 2015 exhibit a growth rate of 300 files each
quarter, with a p-value of less than 8 ∗ 10−13 and an adjusted R2 of 0.97. Then,
the ratio increases, between Q4 2015 and Q4 2016, the growth rate is 801 test-
case files, with a p-value of less than 0.010 and adjusted R2 of 0.89. As of
Q1 2017, the growth rate has flattened, and is now 84 files per quarter, with a
p-value of 2 ∗ 10−5 and adjusted R2 of 0.80. The last quarter of 2019 shows a
decrease in test case files, which reflects the fact that one developer removed, in
his opinion, unnecessary integration tests, by converting some to unit tests and
removing others altogether, in a refactoring operation. For the integration test
setup files and shared functions (int.setup), the picture is slightly different. Up
until and including Q2 2016, the setup files were growing with 175 files/quarter,
p-value less than 3 ∗ 10−16 and adjusted R2 of 0.98. As of Q2 2016, the growth
stagnates to 41 files/quarter, p-value less than 4∗10−8 and adjusted R2 of 0.90.

When discussing efforts in terms of counts of files, it is important to note
that each file can grow as well. Table 4.1 contains data regarding the average
lines per file type, and its variation across the quarters. For all four file types,
the mean (x̄) and median (x̂) are quite similar, and the standard deviation is
also quite small. The first column refers to Q1 2012, and the last to Q4 2019
(before servicing the debt). Relative to their size, the setup files have the largest
standard deviation. Both integration test cases and setup files have a downward
trend in file size across the quarters, while the Java-based files (production code
and unit tests) are slightly growing, unit tests more so than production code.

The number of authors per year has varied somewhat, as illustrated in ta-
ble 4.2, where the number of unique authors, as identified by the Git Author:

104
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

Table 4.2: Average number of authors each quarter, per year

Year x̄ σ x̂

2011 26.00 7.9 28.0
2012 36.25 2.1 36.0
2013 42.25 6.2 40.5
2014 50.75 1.3 51.0
2015 58.00 3.7 58.5
2016 86.00 5.0 86.5
2017 25.00 10.7 20.0
2018 41.50 15.2 47.5
2019 46.75 3.9 46.5

tag, each quarter is summarized (4 quarters per year). After steady growth until
2016, the last year explosively, there was a contraction during 2017, followed by
slower growth until the end of the study period.

4.4 Results

4.4.1 The origin of deprecation debt
When faced with changed or additional requirements related to an existing
service, developers face a dilemma:

Update the existing service, to accommodate new requests or response param-
eters, or change existing parameters. An equivalent solution is to delete
the old service, and introduce a new one with the same name. No Tech-
nical Debt would be associated with this option.

Keep the old service version and introduce a new version of the same service,
where the required changes are made. The old service version is depre-
cated, and is associated with a Technical Debt principal, as it has to be
maintained alongside the new version, which solves a similar business pur-
pose (being the same service). The consequences of keeping the deprecated
version are not only visible at code level, but might be even more severe
at the testing level since the integration tests, as will be illustrated later,
can keep using the old versions of the service. The propagation effects

4.4 Results 105

of deprecation to the test cases are one example of a code TD-item that
appears as a TD-item in the testware [2].

Either of the two options can be exercised, and for the studied system, the
favored solution was Update, unless this was prevented by protocol conven-
tions. Reasons for being unable to choose Update were such that would cause
existing clients to break, for instance:

• Changing the XML Schema type of an existing parameter (e.g. xsd:integer
to xsd:string), in either the request or the response.

• Adding a new mandatory request parameter P , as this would break old
clients who would not send P in their requests towards the system.

• Making an existing optional request parameter P mandatory, as existing
clients would be unaware that P was required.

• Adding an optional or mandatory parameter in a response, as this would
break those clients who would perform strict schema validation on received
responses.

Some of the reasons for choosing option Update were:

• If the existing service had not yet been part of any product release, so
external clients would not have had the opportunity to interact with it, or
learn about the API.

• Adding an optional parameter P to a request, as existing clients could
refrain from sending P .

• Refraining from returning an optional parameter P in a response, as ex-
isting clients would already have had to deal with the absence of P when
interpreting the response.

Initially, the system had no monitoring of which version of a service is cur-
rently used by which customer. This monitoring was introduced in 2017. During
late 2019, there were efforts made to clean up the unused, deprecated service
versions. Based on usage data, 121 deprecated service versions were identified
and removed. At the end of the studied period (before cleanup), the system
comprised 632 unique services, which exposed 891 different versions of services.
In other words, almost three out of ten (29%) of the service versions were dep-
recated at the end of the studied period.

106
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

Kruchten et al. [72] refer to debt principal as proportional to the effort that
a development team would expend to eliminate it. The interest incurred by
a technical debt item is the additional effort needed to eliminate the debt if
the item is left in the system. This view is also shared by others [4]. For
our deprecated service versions, the principal would include the effort needed
to remove the integration test cases (int.setup and int.tc), plus the production
code (prod) and unit tests (unit) maintenance between the introduction of the
usage statistics and the pay-back in Q4 2019. We classify our deprecated service
versions as two different types of Technical Debt Items (TD-items):

• Type I TD-items: deprecated versions of services that the usage metrics
reported as not in use in any external customer installation.

• Type II TD-items: versions of services, that, although deprecated, were
reported as in use in some external customer installations by the usage
metrics.

While Type I TD-items require a relatively small effort to remove the ser-
vice versions (relatively low principal), the second Type II TD-items requires
more coordination with the customer adaptation teams, for them to adapt the
customer installation to the ultimate versions of the service before the removal
of the deprecated service versions both from the code and test base.

We treat production code and unit tests similarly, as they are both specified
in Java, a statically typed language. Likewise, we count both integration test
cases and their setup files together, as they both are specified in untyped XML.

javacode = prod+ unittest

int.test = int.tc+ int.setup

We will use the following set of equations to calculate the usage of a partic-
ular service version v at quarter q in files of type t:

FILES(q, t) = {f : quarter = q, type(f) = t} (4.1)

PRESENT (v, f) =
{

1, if v occurs in file f
0, otherwise

(4.2)

COUNT (v, q, t) =
∑

f∈F ILES(q,t)

PRESENT (v, f) (4.3)

4.4 Results 107

We define COUNT (v, q, t) as the number of files of type t in which service
version v was present in quarter q. We choose the number of files rather than the
number of occurrences with the hypothesis that the marginal cost of changing
an additional occurrence, once a file has been found, is negligible.

To calculate the distribution of service versions throughout the different
kinds of files, we select quarter Q4 2019 (before servicing the deprecation debt),
and enumerate all the 891 service versions. For each service version, we calculate
the COUNT (v, 2019Q4, t), values, where t is either Java (java) or XML files
(int.test). The result is plotted in figure 4.3, as a histogram with 30 logarithmic
bins.

0

100

200

1 10 100 1000

COUNT(v, "2019−q4", type)

n
u

m
b

e
r

o
f

s
e

rv
ic

e
 v

e
rs

io
n

s

type int.test java

Figure 4.3: Occurrences of services in Java or integration test code

Note the heavily right-skewed distribution, where relatively few service ver-
sions are heavily used, while the majority of service versions are used in only a
handful of files. Occurrences in Java-based files occur more seldom (closer to the
y-axis) than integration tests, though 96 service versions are present in only one
integration test file. This is also visible in table 4.3, where the Java-based code
have a considerably smaller mean (x̄) and median (x̂) than the integration tests.
Table 4.3 also displays the number (N) of different service versions (noting that

108
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

Table 4.3: Occurrences in files.

Type N x̄ σ x̂ Q90% Q95% max
javacode 891 5.3 7.9 3 10 15 165
int.test 867 31.0 110.0 8 57.4 106 1529

24 service versions that are used in Java code are not used in integration tests),
standard deviation (σ), 90th and 95th percentiles, and the max value.

Production code and Java-based tests, such as unit tests, typically use
a broader spectrum of interfaces, such as internal domain-model interfaces,
whereas the primary purpose of the integration tests is to exercise and vali-
date the external application interface (that is, the exposed services, in their
different versions). The most heavily used service version appears in 1529 inte-
gration test files (including setup files), out of around 12300 files.

4.4.2 Deprecated services
All analyzed services start as “non-deprecated,” in version 1.0, but some will
evolve together with the product to later versions.

Result: Time series of usage data for each deprecated service version
following deprecation

end_of_study ← Q4_2019;
for v ← all_deprecated_service_versions do

when← find_deprecation_timestamp(v);
following_quarter ← next_quarter(when);
for q ← following_quarter to end_of_study do

count[v, q, Java]← COUNT (v, q, Java);
count[v, q,XML]← COUNT (v, q,XML);

end
end
return count
Algorithm 1: Calculating usage of deprecated service versions

Algorithm 1, illustrates the process to collect the usage data for every depre-
cated service version, starting at the quarter following the deprecation event as
recorded in the Git version control log. Thus, the initial data point for a service
version closely reflects the state at the time when it was deprecated. In the ideal

4.4 Results 109

world, each service version should show a flat or decreasing line, as its usage
decreases as the product evolves. It is important to note that also deprecated
service versions, which are still in use and delivered with the product, should
have some usage in tests (the target is not zero files). However, typically this
number should be relatively low (in the single digits), as the officially supported
version should be used instead.

Figure 4.4 depicts the situation for the six most frequently used deprecated
service versions4, and figure 4.5 for the following six. All of these occur most
frequently in integration tests. A few service versions are fairly flat, a few show
moderate growth, and a few show extreme growth up until Q2 2016. Following
the end of 2016, most of the usage is flat, and there are few changes in usage.

400

600

800

1000

1200

2
0

1
4

−
q

3

2
0

1
4

−
q

4

2
0

1
5

−
q

1

2
0

1
5

−
q

2

2
0

1
5

−
q

3

2
0

1
5

−
q

4

2
0

1
6

−
q

1

2
0

1
6

−
q

2

2
0

1
6

−
q

3

2
0

1
6

−
q

4

2
0

1
7

−
q

1

2
0

1
7

−
q

2

2
0

1
7

−
q

3

2
0

1
7

−
q

4

2
0

1
8

−
q

1

2
0

1
8

−
q

2

2
0

1
8

−
q

3

2
0

1
8

−
q

4

2
0

1
9

−
q

1

2
0

1
9

−
q

2

2
0

1
9

−
q

3

2
0

1
9

−
q

4

quarter

C
O

U
N

T
(v

,
q

u
a

rt
e

r,
 t

y
p

e
(v

))

service−version−type
Alpha−v1_0−IT

Beta−v1_0−IT

Delta−v1_0−IT

Epsilon−v1_0−IT

Iota−v1_0−IT

Theta−v1_1−IT

Figure 4.4: Top 6 used deprecated service versions per quarter

The situation in the six deprecated services most frequently used in Java
files is depicted in figure 4.6. While there is a slight increase for some services,
in general the situation is much more stable than for the integration tests, and
the number of affected files are also much lower.

4The names and nature of the services are obfuscated due to confidentiality and security
reasons.

110
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

100

200

300

400

500

2
0

1
4

−
q

2

2
0

1
4

−
q

3

2
0

1
4

−
q

4

2
0

1
5

−
q

1

2
0

1
5

−
q

2

2
0

1
5

−
q

3

2
0

1
5

−
q

4

2
0

1
6

−
q

1

2
0

1
6

−
q

2

2
0

1
6

−
q

3

2
0

1
6

−
q

4

2
0

1
7

−
q

1

2
0

1
7

−
q

2

2
0

1
7

−
q

3

2
0

1
7

−
q

4

2
0

1
8

−
q

1

2
0

1
8

−
q

2

2
0

1
8

−
q

3

2
0

1
8

−
q

4

2
0

1
9

−
q

1

2
0

1
9

−
q

2

2
0

1
9

−
q

3

2
0

1
9

−
q

4

quarter

C
O

U
N

T
(v

,
q

u
a

rt
e

r,
 t

y
p

e
(v

))

service−version−type
Eta−v1_0−IT

Gamma−v1_0−IT

Iota−v2_0−IT

Lambda−v1_0−IT

Nu−v1_0−IT

Zeta−v1_0−IT

Figure 4.5: Top 7-12 used deprecated service versions per quarter

We note that some services (e.g., Epsilon, Eta, Iota) appear both among
the top 12 integration tests and in the top six Java-based files. These are “core
services,” central to the application at hand. Furthermore, we note that one
service, Iota, in different versions, is both the sixth and the eighth most used in
integration tests.

Most of the quarters, there is no change in the usage of the deprecated
service versions. Out of the 7849 data points (one deprecated service version in
one quarter is a data point), growth is flat in 6584, i.e. given a random service
in a particular version, and a random quarter following the deprecation of that
service version, the chance is nearly 84% that there has been no change in usage.
The odds for decreasing usage is 5.1% (413 cases), and increasing is 10.9% (852
cases).

Looking at the quarters with the most growth in absolute terms, we see the
same three quarters as in figure 4.4. The top 10 growth operations and quarters
are illustrated in table 4.4. In the table, the service versions Alpha v1.0 and Zeta
v1.0 is marked in bold, as being Type I TD-items (deprecated and not being
used in live operation). The column Count contains the COUNT (v, q, int.test)

4.4 Results 111

40

80

120

160

2
0

1
4

−
q

3

2
0

1
4

−
q

4

2
0

1
5

−
q

1

2
0

1
5

−
q

2

2
0

1
5

−
q

3

2
0

1
5

−
q

4

2
0

1
6

−
q

1

2
0

1
6

−
q

2

2
0

1
6

−
q

3

2
0

1
6

−
q

4

2
0

1
7

−
q

1

2
0

1
7

−
q

2

2
0

1
7

−
q

3

2
0

1
7

−
q

4

2
0

1
8

−
q

1

2
0

1
8

−
q

2

2
0

1
8

−
q

3

2
0

1
8

−
q

4

2
0

1
9

−
q

1

2
0

1
9

−
q

2

2
0

1
9

−
q

3

2
0

1
9

−
q

4

quarter

C
O

U
N

T
(v

,
q

u
a

rt
e

r,
 J

a
va

)

service−version−type
Epsilon−v1_0−java

Eta−v1_0−java

Iota−v1_0−java

Mu−v1_0−java

Nu−v1_0−java

Theta−v1_0−java

Figure 4.6: Top 6 used deprecated service versions in Java files

metric for the specified service version and quarter, while the Growth column,
contains the change since the previous quarter. The Dupl column is the abso-
lute number of duplicated files of the Growth, and the % Dupl is the relative
percentage of duplicates, compared to the Growth. We see that a small number
of service versions cause most of the growth in debt. Furthermore, this debt is
concentrated to three quarters, spanning Q4 2015 to Q2 2016. Inspecting the
% Dupl column, we see that for some service versions (Beta v1.0, Theta v1.0),
over half of the added files are duplicates of each other. This indicates that
the developers were unaware of a feature that was added to the test execution
runner in Q4 2015, where a “shared function repository” could be defined. All
of the duplicated files except one are setup files or “utilities” for the test cases.

In figure 4.7, we plot the relative number of file duplicates across each quar-
ter, and the lines of code in these files. We see that as of 2014, around 15% of
the files are duplicated, though these only make up of around 5% of the total
code base.

In table 4.5, we instead look at the service versions and quarters where the
most deprecation debt has been repaid (in the form of files that no longer are

112
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

Table 4.4: Most growing deprecated service versions, per quarter.

Service Quarter Count Growth Dupl % Dupl
*Alpha v1_0 Q1 2016 949 338 66 19.5%
Beta v1_0 Q2 2016 1058 243 77 31.6%
*Alpha v1_0 Q2 2016 1150 201 74 36.8%
Beta v1_0 Q1 2016 815 185 65 35.1%
Theta v1_1 Q2 2016 1019 175 65 37.1%
Theta v1_1 Q1 2016 844 150 48 32.0%
Delta v1_0 Q1 2016 666 100 0 0.0%
Beta v1_0 Q4 2015 630 86 53 61.6%
Theta v1_1 Q4 2015 694 80 42 52.5%
*Zeta v1_0 Q1 2016 505 72 0 0.0%
Count is the COUNT (v, q, t) metric.
Growth is the change in Count since the prior quarter.
Dupl is the number of duplicates among the Growth.
% Dupl is the relative number of duplicates.
Type-I TD-items in bold.

used). We see that five out of the top 10 service versions were repaid during Q4
2019. Further analysis of the version history logs revealed that this is related
to the prior mentioned refactoring illustrated in figure 4.2, where one developer
removed many integration tests, converting some of them to unit tests.

In order to conclude as to how the duplicated files shown in table 4.4 were
introduced, we analyzed the version control logs. The analysis indicated that
the files, to a large extent, originated from experienced developers. All in all,
102 commits were affected, authored by 25 different developers, and the top
5 contributors caused 73.5% of the duplicates. These top 5 contributors all
had several years of experience in the product at the time of introducing the
duplication.

Figure 4.8 illustrates the concept of principal, which, for Type-I TD-items,
are proportional to the usage in the code base, and interest, which is propor-
tional to the increased usage. The First metric is the usage at the quarter
following deprecation (different quarter for each service version), and the Last
metric is the usage at the end of the study, before servicing the debt. Usage
before deprecation is not counted as principal by this metric.

In table 4.6, the
∑
First column is the sum of all the First values for

all N deprecated service versions and the
∑
Last column is the sum of all

the Last values. The
∑
Add column totals the net additions, and the

∑
Del

column the net removals. In case one file contains multiple instances of the
same deprecated service, it is only counted once, but in case it contains several

4.4 Results 113

Table 4.5: Least growing deprecated services, per quarter.

Service Quarter Count Growth
Nu v1_0 Q4 2019 200 -28
Psi v2_0 Q4 2019 44 -28
Chi v1_0 Q4 2019 20 -28
*Zeta v1_0 Q1 2017 537 -29
Epsilon v1_0 Q1 2017 851 -31
Iota v1_0 Q1 2016 601 -40
Delta v1_0 Q1 2017 730 -51
Zeta v1_7 Q3 2018 10 -60
Phi v1_0 Q4 2019 21 -105
*Zeta v1_4 Q4 2019 36 -148
Count is the COUNT (v, q, t) metric.
Growth is the change in Count since the prior quarter.
Type-I TD-items in bold.

Table 4.6: Affected files for all deprecated services

Type N
∑
First

∑
Last

∑
Add

∑
Del

javafiles 285 1620 1878 292 -34
int.test 282 10619 13526 3819 -912
Sum 12239 15404 4111 -946

114
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

0.00

0.05

0.10

0.15

2
0

1
2

−
q

1

2
0

1
2

−
q

2

2
0

1
2

−
q

3

2
0

1
2

−
q

4

2
0

1
3

−
q

1

2
0

1
3

−
q

2

2
0

1
3

−
q

3

2
0

1
3

−
q

4

2
0

1
4

−
q

1

2
0

1
4

−
q

2

2
0

1
4

−
q

3

2
0

1
4

−
q

4

2
0

1
5

−
q

1

2
0

1
5

−
q

2

2
0

1
5

−
q

3

2
0

1
5

−
q

4

2
0

1
6

−
q

1

2
0

1
6

−
q

2

2
0

1
6

−
q

3

2
0

1
6

−
q

4

2
0

1
7

−
q

1

2
0

1
7

−
q

2

2
0

1
7

−
q

3

2
0

1
7

−
q

4

2
0

1
8

−
q

1

2
0

1
8

−
q

2

2
0

1
8

−
q

3

2
0

1
8

−
q

4

2
0

1
9

−
q

1

2
0

1
9

−
q

2

2
0

1
9

−
q

3

2
0

1
9

−
q

4

quarter

p
e

rc
e

n
ta

g
e

 i
d

e
n

ti
c
a

l
in

t.
te

s
t

fi
le

s
 a

n
d

 L
O

C

metric files LOC

Figure 4.7: Percentage of identical integration test files and LOC

deprecated services, it is counted once per such service. This uses the hypothesis
that changing several instances of the same pattern in a single file incurs a
relatively minor additional cost, compared to finding the file and changing in
one place.

The cost of removing a service version Vdepr, which has a non-deprecated
version Vactual can be broken down into the following components:

Cactual(Vdepr) = Cinternal(Vdepr) + Cexternal(Vdepr) (4.4)

Cinternal(Vdepr) = Cremoval(Vdepr) + Cupdate(Vdepr, Vactual) (4.5)

where

• Cactual(V) is the actual cost of removing V .

• Cexternal(V) is the cost of removing V by integrators and other clients
(outside the development organization).

4.4 Results 115

400

600

800

1000

1200

20
14

−q
3

20
14

−q
4

20
15

−q
1

20
15

−q
2

20
15

−q
3

20
15

−q
4

20
16

−q
1

20
16

−q
2

20
16

−q
3

20
16

−q
4

20
17

−q
1

20
17

−q
2

20
17

−q
3

20
17

−q
4

20
18

−q
1

20
18

−q
2

20
18

−q
3

20
18

−q
4

20
19

−q
1

20
19

−q
2

20
19

−q
3

20
19

−q
4

quarter

C
O

U
N

T(
v,

qu
ar

te
r,

ty
pe

(v
))

service−version−type Alpha−v1_0−IT

Interest: cost of removing the growth in usage
of the deprecated service version

Principal: cost of removing the operation version
when deprecated

First

Last

Figure 4.8: Schematic illustration of Principal, Interest, First and Last metric
for integration tests of service Alpha v1.0

• Cinternal(V) is the cost of removing V that is internal to the development
organization (code base, including tests).

• Cremoval(V) is the cost of removing only V and its associated test cases.

• Cupdate(V1, V2) is the cost of updating all the remaining tests from V1 to
V2.

Using the Technical Debt metaphor, the Cactual(V) at the time of depreca-
tion can be considered as the principal, as the alternative would be to simply re-
move V , replacing it with the updated version. We can estimate Cupdate(V1, V2)
as the additional usage of V1, not related to the normal tests of this version.
In integration tests, it is common that certain operations are used for setting
up the data in order to test other services, such as when a login service is used
in several integration tests across the test base. This is what we call excessive
usage of a service version, as opposed to the expected usage of a service version
which is its source code, its unit tests and integration tests of the service version
itself.

116
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

Table 4.7: Affected files for unused services (Type-I TD items).

Type N
∑
First

∑
Last

∑
Add

∑
Del

javafiles 121 505 598 105 -8
int.test 120 2383 3428 1313 -268
Sum 2888 4026 1418 -276

For Type-I TD-items, where the Cexternal is zero, we find that the TD_principal
is proportional to the usage at the time of deprecation, that is,

∑
First. The ac-

crued interest is proportional to the growth in usage, that is, to
∑
Last−

∑
First.

TD_principalI ∝
∑

First

TD_interestI ∝
∑

Last−
∑

First

Thus, the relative growth of TD_interestI for Java files is
∑
Last/

∑
First−

1, that is (598/505) − 1, or 18%. For the integration tests, the corresponding
number is (3428/2383)− 1, or 44%. Thus, the interest rate for integration tests
is much higher than for Java-based tests. We also note that there have been
some decreases. In total, 268 files have been corrected for the 120 different in-
tegration test service versions, but this has not been able to keep up with the
growth.

For Type-II TD-items, the situation is somewhat more complicated, as one
also has to consider the lack of test cases as a debt principal, what Kruchten
et al.[72] refers to as “Misalignment between tests and code.” We note that
there are three service versions not tested in integration tests (Table 4.6, N for
int.test), and one of these was among the Type-I TD items (Table 4.7).

4.4.3 Servicing the debt
We removed 121 deprecated service versions in late 2019, see table 4.7. We
note that one of the removed service versions was not present in any integration
tests (closer inspection revealed that those tests had been migrated to the new
version at the time of deprecation, in effect leaving the old version untested for
five years).

Based on data from 21 of the operations that were not part of any other tests,
we found that on average, a service version occurred in 4.4 Java files and 3.6

4.4 Results 117

integration test files. This can be used to estimate the EXPECTED_USAGE,
using the values from table 4.7.

EXPECTED_USAGEjava = 4.4 ∗ 121 = 532files

EXPECTED_USAGEint.test = 3.6 ∗ 120 = 432files

Based on these values, we find that out of the removed operations, there was
little, if any, excessive usage amongst the Java files. However, there had been
some growth due to interest (93 additional files being affected). The majority of
excessive usage can be attributed to the integration tests, which also contributed
the most of the additional interest.

The removal of the 121 service versions was carried out as a low-priority
task during several months by three developers, with between 4 to 25 years of
experience in the industry. The time spent (based on Git logs and estimations by
the developers, as this time was not separately time reported) was 160 hours.
Part of this time was due to back-porting the changes to an older, but still
alive, branch, which proved to be almost as costly as doing the change in the
original branch. Given this, it is reasonable to estimate that, had there been no
additional growth in technical debt (such as the one during 2016 illustrated in
figure 4.4), the removal would have taken between 0% (in case all file changes
could have been automated, e.g. via scripts), and 29% (1 − 2888/4026) less
time, i.e. 114 hours rather than 160. In practice, the truth is somewhere in
between, as some changes could be highly automated, and some required more
manual actions. These kinds of tasks are also highly dependent on the skill of the
developer doing the change, in particular as the plain-text-based XML language
lacks IDE support for refactoring operations such as renaming methods. All
three developers were well versed in the Git version control system, scripting
tools, and regular expressions, and used them, together with the test base and
the Continuous Integration environment to verify system behavior before and
after each change.

4.4.4 Commit counts
It could be argued, from a theoretical standpoint, that a file that is untouched
and never read has no technical debt, even if it contains TD-items (in our
case deprecated services). In figure 4.9 we visualize the activity on the top
six deprecated service versions, starting from the quarter following deprecation,
plotting how many commits per quarter affect files where these services are used.

118
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

0

100

200

300

2
0

1
4

−
q

3

2
0

1
4

−
q

4

2
0

1
5

−
q

1

2
0

1
5

−
q

2

2
0

1
5

−
q

3

2
0

1
5

−
q

4

2
0

1
6

−
q

1

2
0

1
6

−
q

2

2
0

1
6

−
q

3

2
0

1
6

−
q

4

2
0

1
7

−
q

1

2
0

1
7

−
q

2

2
0

1
7

−
q

3

2
0

1
7

−
q

4

2
0

1
8

−
q

1

2
0

1
8

−
q

2

2
0

1
8

−
q

3

2
0

1
8

−
q

4

2
0

1
9

−
q

1

2
0

1
9

−
q

2

2
0

1
9

−
q

3

2
0

1
9

−
q

4

quarter

c
o

m
m

it
c
o

u
n

t

service−version−type
Alpha−v1_0−IT

Beta−v1_0−IT

Delta−v1_0−IT

Epsilon−v1_0−IT

Iota−v1_0−IT

Theta−v1_1−IT

Figure 4.9: Count of commits affecting files using the top six deprecated service
versions across each quarter

We see the many commits during late 2015 and 2016, where most of the
commits were introducing the deprecated services into the test base. Then, a low
period during 2017 and 2018, followed by high activity during Q2 2019, where
many commits were touching files related to the top deprecated services. During
this quarter, two new requirements were developed, adding configurability where
previously more rigid business models had been used. In total, 78% of the
commits for the ten most used deprecated services during Q2 2019 were related
to these two requirements. Thus, figure 4.9 illustrates that for almost two
years, there was not much movement in the files related to the top deprecated
services. Then, during early 2019, two requirements were to be implemented,
which caused much effort in maintaining these files (i.e., interest that could
have been avoided if these deprecated versions would have been removed). This
illustrates the highly non-linear nature of technical debt management, making it
even more important to visualize it so that efforts to mitigate it can be estimated
appropriately.

4.4 Results 119

4.4.5 Discussion
Regarding RQ 1, whether the rule to avoid updating existing tests contributed
to the spread of Technical Debt, we experienced an uneven distribution of depre-
cation debt among the deprecated services. Since a small number of highly used
services caused a significant increase in debt in integration tests, we hypothesize
that highly used services should be treated differently than others.

Regarding RQ 2, whether the XML-based integration tests and the Java-
based files show any difference in technical debt, we experienced very little
debt for unit test cases since the number of affected files remains small. The
integration tests show large growth in debt, originating from a small amount
of highly used services, as shown in figure 4.4 and figure 4.5. After 2016, we
experience a slower growth of integration test cases in general, and the product
appears to have been tested using other means (such as Java-based tests), with
minimal usage of the integration test framework.

Regarding RQ 3, how the growth in deprecated service version usage has
contributed to Technical Debt, we note that most of the growth in deprecated
services usage occurred during a limited time, between late 2015 and mid-2016.
Integration tests were much more affected than Java-based files. For the services
removed in late 2019, the accrued interest in the integration tests was calculated
to 44%, versus 18% for the Java-based files. We have identified considerable
duplication among the integration tests, particularly the setup files. Undue
duplication incurs technical debt, even if a particular service is not deprecated,
but in this case if a service is deprecated but still used in integration tests might
lead to unexpected tests results due to the combination between deprecated and
non-deprecated services. Thus, the general higher frequency of copied code in
the integration tests could explain why there were more duplicates of deprecated
service versions.

On a positive side, we note some repayment of interest for both types of
files, though the decrease does not weigh up the increase in debt.

Regarding RQ 4, about the likely cause of the spreading Technical Debt,
we can identify at least three causes of the spreading of deprecation debt:

• Backward compatibility causes technical debt unless the protocol can ac-
commodate the needed changes without breaking older clients. Depending
on the strictness of validation in clients or intermediate systems, differ-
ent amount of debt is incurred. In the studied system, the rigid protocol
rules, and strict security requirements (schema validation in firewalls) con-
tributed to the large number of deprecated service versions.

120
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

• By examining the integration tests, we could see a pattern of copied setup
files. Even though the integration test engine had the possibility of using
a “shared function repository” since Q4 2015, this feature was not widely
used during early 2016. Since 2014, the level of duplication in the inte-
gration test base has been around 15% on a file-by-file basis, comprising
approximately 5% of the codebase, as shown in figure 4.7.

• Regarding the period with the most growth, late 2015 to mid-2016, we
could not see direct causes due to the growth in personnel during this
time, though indirect causes, such as stress on experienced developers,
can not be ruled out. Feedback from three developers with knowledge of
the situation unanimously report this time as highly challenging (meeting
a customer deadline). This is consistent with what is reported by Kruchten
et al. [72]: “The most likely cause [of Technical Debt] we have observed is
schedule pressure”.

To summarize, we state a hypothesis that if an appropriate visualization had
been in place for the integration tests, it is likely that both the duplicated files
and the added deprecation debt could have been avoided during the stressful
times of 2015-6. This might have saved up to 29% of the removal effort in late
2019. It is important to note that the distribution of services is highly right-
skewed, meaning that measures of central tendency such as the mean, median,
and standard deviation values are not very helpful. Instead, “top-N”, or “most-
growing” lists should be used to keep track of the code.

4.5 Threats to validity
We discuss the threats to validity from four different angles: construct validity,
internal validity, external validity and reliability, following guidelines outlined
in [141].

Construct validity deals with whether the studied measures reflect what
the researcher has in mind, and what is stated in the research questions.

In this study, we use version control data (source code and revision history
information) to draw conclusions. A threat to validity to this approach is that
“you only see what was built,” which is a form of survivor bias — i.e., you might
see what was built, but not how or why it was built that way. To increase con-
struct validity, we presented our conclusions to five of the remaining developers,
validating our assumptions about why certain solutions were used.

4.5 Threats to validity 121

When using version control logs as a data source, an important aspect is to
consider the branching pattern and whether or not the studied organization com-
monly used rebasing commits. The Git version control system allows authors to
“squash” commits, which may have been performed by different authors, at dif-
ferent times, into one new commit, discarding the constituent commits. For the
studied system, this was not an approved practice, as the organization valued to
see each commit, as it was written and pushed to the central repository. Most
of the development took place in a single “master” branch for the duration of
the study. Features were developed in other branches and later introduced into
the master branch, typically via the Git rebase function, which keeps a linear
history by rewriting commits, preserving author information and commit dates.

Internal validity deals with whether there might be other, non-studied
factors that could explain some of the findings. We have gathered quantitative
data (Git logs, usage statistics), but also the Git ways of working for the studied
system, which allows us to study the phenomena (i.e., the effects of deprecation
on TD and its spread). In addition, to validate our conclusions, increasing
internal validity, we triangulated our data by providing our conclusions and
feedback to five developers of the system, one of which was the author of much
duplicates during 2015-2016, and asked about their opinions. This provided
valuable insight into the conditions and the time pressure experienced by the
development organization.

External validity concerns to what extent it is possible to generalize the
findings, and to what extent the findings are of interest to other people outside
of the investigated case.

This paper is about experiences from a particular system, with a particular
toolset. We have tried to describe characteristics that might enable others to
judge whether the findings are applicable for other systems, but we cannot claim
generalizability across all possible systems or organizations.

Reliability concerns whether or not the data and analysis are dependent
on the specific researchers. Most of the data in this report are collected from
quantitative sources, such as Git logs, and processed and visualized using stan-
dard statistical tools. As such, there is little room for bias in the processing of
the collected data.

Interpretation of the processed data runs the risk of introducing reliability
threats. We strove to reduce reliability threats by frequent interactions with
the studied organization, especially with the developers that had been part of
the product development team during the whole studied period, and elicited
feedback from five of them.

122
The Hidden Cost of Backward Compatibility: When Deprecation

Turns into Technical Debt

4.6 Conclusions
As illustrated in this paper, to combat deprecation debt, it helps to keep it
visible. Many IDEs today show deprecated classes in a different font (e.g.,
strikethrough), and this could be one reason why the unit tests do not show the
same growth as the integration tests.

Another finding is the uneven distribution of the contribution to the debt.
For the majority of services, the decision not to update deprecated usages in
test cases did not spread any technical debt. However, the decision not to
update some highly used “core services” caused up to 29% of increased effort in
converting the test base at service removal. The addition of this debt mostly
occurred during three quarters, between Q4 2015 and Q2 2016, a time that was
identified as particularly stressful, which aligns with the findings of Kruchten et
al. [72].

After the downsizing of the product, the integration tests were mostly un-
touched, as the new developers valued other test principles, such as Java-based
testing (relegating much of the prior testing to unit tests). This suggests that
as the test base grows, so does the importance of the IDE support (refactorings,
static code analysis, duplication detection).

The usage statistics turned out to be a valuable tool to identify unused
service versions (Type-I TD-items), supporting the removal of these.

Chapter 5

Dear Lone Cowboy
Programmer - your days
are numbered!

This chapter is based on the following paper:
A. Sundelin, J. Gonzalez-Huerta, K. Wnuk, et al., “Dear Lone Cowboy Pro-

grammer - your days are numbered!” Communications of the ACM, Submitted
2021-07-22

Abstract
Since its inception, software development has been recognized as a highly tech-
nical activity, where, at times, highly skilled professionals have been tempted to
face technical problems on their own. In the past, software developers, may have
been inclined to create solutions as if they were the only ones who needed to
understand the solutions. However, nowadays, the disciplines of software devel-
opment and systems development have undergone significant change. Current
software development requires more crafting skills, in addition to engineering
skills. The lone-cowboy programmer will soon have no place in properly organ-
ised software development projects. Current practices demand that a productive
programmer be tasked to develop both working software (as claimed in the Ag-
ile Manifesto) and well crafted software. Accountability, pride in one’s work,

124 Dear Lone Cowboy Programmer - your days are numbered!

continuous learning and mentorship are characteristics of the profession that we
should promote if we want to enable an attitude of craftsmanship within software
development. This paper provides experiences of craftsmanship, and argues why
software craftsmanship is good for the practitioner and software development
organizations. To support this claim, we have analysed the development of a
product that was developed by following several craftsmanship principles. We
observed the product’s development for seven years, and interviewed several
professionals who were involved in its development.

5.1 Introduction
Software engineering emerged as a professional practice in the late 1960s as
a reaction to the “software crafting” era, where the “code and fix” approach
was prevalent [13]. At this time, a “hacker culture” fostered a culture of “cow-
boy programmers,” who could hastily patch together something during an “all-
nighter” to meet an important deadline. However, the efforts of these cowboy
programmers often led to code that was unmaintainable and often confusing.

Today, programmers enjoy access to tools that can be used to develop and
manage software that their 1960s counterparts could only dream about. Effi-
ciency gains and the standardization of hardware, operating systems, and devel-
opment and collaboration tools have tremendously increased the development
potential of a single developer. This could be one reason why the popular-
ity of the “lonely programmer” mentality remains surprisingly prevalent among
software developers and engineers.

The advent of Agile Software Development and its focus on rapid software
delivery has perhaps reinforced the desirability of remaining a “cowboy pro-
grammer” for some who may even be willing to sacrificing quality aspects for
the sake of fast delivery. The lack of a long-term perspective, and a disregard
for the skills needed to stay productive over time, appear to be two of the
main challenges facing those that strive to introduce the concept and practice
of agility to software development organizations.

The software industry’s level of adoption of Agile Manifesto principles, in
particular its perceived lack of focus on the more technical practices, prompted
the formulation of the Manifesto for Software Craftsmanship1 in 2009. The
Software Craftsmanship Manifesto incorporates the following values:

• Not only working software, but also well-crafted software.
1https://manifesto.softwarecraftsmanship.org/

5.1 Introduction 125

• Not only responding to change, but also steadily adding value.

• Not only individuals and interactions, but also a community of profession-
als.

• Not only customer collaboration, but also productive partnerships.
Several scholars have commented on software craftsmanship. For example,

Jacobson [63] has argued that engineering is a craft that is supported by theory,
while Bergtröm and Blackwell [10] argue that professional practice is “craft-
work.” In their empirical study, Lingel and Regan [81] derived different con-
ceptualizations of the concept of “craft” in building software by using a sample
of twelve participants, collecting subjective opinions via interviews and a focus
group. Lucena and Tizzei [82], on the other hand, present a so-called “expe-
rience report” (written from the perspective of a team member) on a Scrum
project that applied the craftsmanship principles.

For the present study, we followed a project aimed at developing a financial
industry product over seven years. Already at the inception of the project, the
developers were inspired by Software Craftsmanship principles. Throughout the
project, we found the following themes to be highly influential to the performed
work:

• Maintain a long-term value vision, where both individuals and teams take
accountability towards stakeholders, including other developers and busi-
ness owners.

• Focus on short feedback loops at many levels, emphasising shortening
feedback loops wherever possible while still providing clear, unambiguous,
and relevant feedback.

• Use code kata exercises to show the expected product development meth-
ods, thus facilitating both short feedback loops and a long-term value
vision.

• Foster a shared professional culture by keeping teams aligned and sharing
a common way of working across development sites and time zones.

This article details how software craftsmanship works in practice. The
project that we followed started with a single team of 9 developers but grew
to encompass about 80 developers on two continents. The principles of clean
code [87] and software craftsmanship were applied during the whole evolution
of the system, and the consequences of adopting these principles are described
in this article.

126 Dear Lone Cowboy Programmer - your days are numbered!

Studied product

We followed the evolution of a transaction-intensive application in the financial
transfer domain from its conceptualization in the start-up phase, through its
first installation at a customer site, to its expansion into approximately 15
different installations. It currently serves approximately 100 million customers.
During our study, we also analyzed quantitative data from software development
repositories and complemented data with interviews with individuals who were
crucial to product development.

Approximately 25 developers contributed to the first release of the system
in 2010. Development also involved a few requirement engineers, verification
engineers, and various management roles. The number of developers fluctuated
over time, with a mean of 48 developers and a maximum of 91. On average,
each developer stayed nearly two years in the product, although five developers
stayed the entire studied period, ending in 2016.

Study method

We conducted six interviews with developers who were involved in the project,
including the lead system architect. To increase the reliability of our study, we
also sought corroborating evidence from an archival analysis of several artifacts,
including requirements, design documents, code repositories (Git), and fault
management systems.

To gain a broader picture of software craftsmanship, we performed a system-
atic literature review using a process of forward and backward snowballing. We
began with nine seed papers. After four snowball iterations, we found an addi-
tional nine papers on the subject. Based on these papers, we then constructed
an informed and flexible interview protocol. After transcribing and coding the
interviews, we also thematically coded eleven books referenced by the reviewed
academic papers. Based on the findings from the papers, the books, and the
interviews, we extracted several codes and established their relationships. We
presented this information as a mind map. We published the complete details
of these findings in [131].

From late 2009 until October 2016, the first author was part of a product
development team. The second and third authors were used as support functions
during the interviews and during the analysis phase of the study to counter any
resulting bias.

5.2 Main observations 127

5.2 Main observations
5.2.1 Individual accountability and team accountability
Being accountable is one of the main principles of software craftsmanship:

It is an attitude of honesty, of honor, of self-respect, and of pride.
It is a willingness to accept the dire responsibility of being a crafts-
man and an engineer. That responsibility includes working well and
working clean. It includes communicating well and estimating faith-
fully. It involves managing your time and facing difficult risk-reward
decisions. [88]

With mechanisms such as signing code artifacts, we ensure that individuals
and teams feel accountable for the code they develop. Instilling accountability
and pride are two solutions that can be used to counter the “just get it done”
syndrome that seems to affect some knowledge-centric professions.

Indeed, accountability is now part of a professional practice that has been
standardized, for example, in successful Open-Source projects, where a respon-
sible release master signs off the code before being merged into the complete
project. Since a team should be accountable and autonomous, this autonomy
should enable them to take end-to-end responsibility for the developed features
or components.

In the system that we studied, different ownership models were deployed
to enable the level of autonomy described above. The main business logic was
implemented in the context of a weak ownership model [44], where the teams
took responsibility for the modules they developed, while simultaneously keeping
an eye on changes that were made by developers outside their team. However,
especially in the early stages of the product’s development, the core of the trans-
actions engine was subject to a much more formal code ownership model [44],
where only a small set of developers were allowed to make changes in their
closely guarded modules.

Main lessons — accountability

1. Development teams take on end-to-end responsibility to define, de-
velop, and test solutions. Requirement engineers (e.g., a “Prod-
uct Owner” role) performed initial conceptualization. Once devel-
opment started, the development team constantly communicated

128 Dear Lone Cowboy Programmer - your days are numbered!

with the PO throughout the development work, seeking to clarify
and get feedback on solutions and their consequences.

2. Code contributions are signed using personal certificates, thus em-
phasizing the importance of personal responsibility. The applica-
tion has an internal Certificate Authority (CA) verifying the sig-
natures.

3. Teams take part in the maintenance of the continuous integration
environment. In particular, this work involves keeping the test base
green, fixing flaky tests, and avoiding unnecessary long-running
tests. When taking shortcuts such as disabling certain test cases
to meet certain deadlines, specific tools are used to keep track of
which developer that disabled what specific test case. After a grace
period, these developers are reminded to take action for the test
case in question.

4. Tests are as necessary as the production code itself and are used as
“the continuously executing requirement specification of expected
behavior” [88]. While most tests are automated, a small minority
in the validation area is not automated (for example, validating
instructions for end-users).

5. Automated regression tests grow faster than the production code,
so the tests have to be layered, with testing done at the lowest layer
where it makes sense. Because of the large amount of produced
test code, it is equally important to clean up the test code and the
production code.

5.2.2 Feedback loops
Shortening the Feedback Loop: Automation and Layering the archi-
tecture

Short feedback loops are a means to avoid bad habits and give developers early
feedback on their work. Short feedback loops are probably the only way one
can make progress with incremental, iterative development.

Using short feedback loops, organizations can adjust how the project should
proceed before it progresses too far in an undesired direction.

5.2 Main observations 129

Incremental development is the first stage at which feedback loops can be
shortened. This approach can be conceived as a way of “growing software”
instead of “building” it in a more traditional fashion. In parallel with the de-
velopment process, prototyping and testing are obvious choices if one wishes to
make the feedback loops shorter.

In the system that we studied, the organization strove to break the require-
ments down into smaller (XSmall and Small sizes) features, as can be seen in
Table 5.1. Instead of spending months on developing several extensive features
as chunks of related functions, the organization’s focus was on obtaining early
feedback, both from the QA teams, but even more importantly, from actual in-
stallations. Half of the XSmall stories were developed (including their analysis
and design) in less than 22 days, the equivalent of one sprint. If we examine
the pure development time (extracted from git-logs), we note that 50% of the
stories were developed in less than 13 days. The days spent in QA portrays the
time each feature spent in system testing and verification2. All of the interview
participants mentioned short feedback loops as one of the organization’s strong
points.

However, to achieve the organization’s goals, the system and software ar-
chitecture need to be designed with testability in mind and support testing at
different levels (such as the unit, integration, functional, and system levels) in
a manner that is as simple as possible. The teams will also have to maintain a
craftsman’s attitude; caring about the code and caring about the test base.

Table 5.1: Elapsed Calendar Days Per Feature Size and Activity.

Development No QA QA Performed
Est.size #Stories x̂ #Stories % #Stories x̂
X-Small 122 22 37 30.3% 85 7
Small 109 29 24 22.0% 85 8
Medium 72 47.5 10 13.9% 62 16.5
Large 13 62 1 7.7% 12 20.5
No QA is the number of features where planned system verification was deemed unnecessary.
x̂ is the number of calendar days required to develop or system test 50% of the stories

2The development and testing departments used three-week sprints. The sprint time of
the development and testing department might explain the average time that was spent on
developing and testing large features (i.e., three sprints and one sprint, respectively)

130 Dear Lone Cowboy Programmer - your days are numbered!

Main lessons related to shortening feedback loops

1. Releases are frequently made, either to the system testing organi-
zation or directly to the customer. This requires automated test
suites with regression tests in place, These tests need to be fre-
quently executed and adequately maintained.

2. To enable frequent releases, we need to provide well-functioning
and straightforward support for upgrades. This includes data mod-
els on persistent storage, in particular.

3. Operate a continuous integration loop, with teams constantly re-
sponding to feedback. As the product grows, the organization
needs to optimize its feedback loops to keep them short. Con-
tinuous integration builds can be parallelized, and tests can be
rewritten at a lower level.

4. Layered testing becomes crucial to shortening feedback loops. Each
team should review and test what they develop, ensuring that the
unit and functional tests they develop satisfy the new requirements.
In some cases, this internal testing procedure (together with the
regression test suite) can be sufficient to quality-assure the product.

5. Having short feedback loops and layered architectures enables de-
velopers to refactor their code, provided that they have a safety net
to detect potential bugs introduced by the refactorings that were
performed.

6. Human work is precious. Consequently, it should be focused on
content, not style. Use tools that can provide automated feedback,
such as static code analyzers and standard formatting tools, to
allow colleagues to focus on reviewing the content instead of the
style.

The dark side of test-focused development

When requirements are specified as executable test cases, conflicting forces
emerge. Such forces need to be balanced against each other. For example, on

5.2 Main observations 131

the one hand, each test case should verify as much functionality of the product
as possible. On the other hand, for validation purposes, each test case should
be readable by domain experts. Plain-text-based methods and tools such as
BDD (Behavior-Driven Development) are often advocated since they enable the
validation process [11], [58].

Because the number of possible test scenarios (including parameter valida-
tion and negative testing) usually outnumbers the product’s actual function-
ality, the number of test cases would grow faster than the production code.
However, plain-text languages and BDD tools often do not support refactoring
and strongly typed navigation (“Find usages”) out of the box.

Consequently, it is more difficult harder to refactor the test base into a
more readable representation. Some organizations also have explicit policy rules
against refactoring test code, citing the “Quis custodiet ipsos custodes” principle
(i.e., raising the question: Who will ensure that the refactored test code behaves
in the same way, finding the same faults as the original test code?)

Thus, there has to be an explicitly stated principle that tests need to be
pushed down to the lowest level where they make sense. While keeping a single
acceptance test case written in BDD style may well be preferable for validation
purposes (i.e., ensuring that the function works as expected by the requirement
owner), a caring developer would not use this type of testing to perform param-
eter validation of input parameters. Because of the large number of needed tests
to perform adequate parameter validation, this type of testing is better done in
a language that supports refactoring and automated restructuring. Typically,
these are unit tests written in the same language as the production code. Per-
forming parameter validation as unit tests also have the benefit of shortening
the feedback loop. The architecture should thus encourage and enforce (to the
extent possible) layered testing, and the organization should set itself the goal
of performing tests at “the lowest level where they make sense”.

The principles of (i) clean code and (ii) technical debt management apply
to both production code and test code. In particular, care has to be taken
when dealing with deprecated code to prevent the spread of its usage in the test
base [129].

5.2.3 Skills
Pride vs. Humility

Developers are expected to show a degree of pride in their product and work
process so that they are motivated to continue with their preferred ways of

132 Dear Lone Cowboy Programmer - your days are numbered!

working. Typically, this attitude will affect how the developer will respond to
the inevitable time pressure. As one developer stated, related to the pressure
to “deliver faster,” without sufficient testing: “It’s about what pride the team
has. We don’t hack together something and just leave it. When we are done,
then we really are done.”

Conversely, the developer’s pride needs to be balanced against a sense of hu-
mility. Developers should realize that they are on a learning path, together with
other stakeholders, exploring the potential solutions whose complexity needs to
be weighed against the value of the problem it solves [60], [88].

Learning how to say Yes and No

Learning how to say “No” in a professional manner is an essential skill. For
example, a developer should only commit to work tasks that the team esti-
mates it can complete while upholding standards regarding, in particular, the
verification and validation process. Usually, this involves time constraints and
deadlines, which the organization tackled by: “Having a dialogue. . . ‘No, we are
not done yet, because. . . ’”

Entering into a productive partnership requires establishing trust between
individual teams and other stakeholders. Teams use common discussion forums
to discuss acceptable solutions and acceptable criteria for the verification pro-
cess. In our study, we noted that the lead developer/architect forum focused
on and reviewed the solution. In contrast, the verification forum focused on
what to test, how to test the solution efficiently and improve the verification
procedure’s overall performance.

When they were under time pressure, instead of performing fewer verification
tests, the teams provided feedback to the stakeholders. Typically, this caused
discussions to take place, with the intent to slice features into smaller parts,
developing the most relevant (and therefore valuable) parts first. For a relation-
ship of trust between development teams and stakeholders to be established,
potential concerns have to be raised quickly so that the slicing is done as early
as possible.

Developing individual skills and team skills

Individual skills are undoubtedly important for a craftsman, but equally impor-
tant is the ability to develop and share these skills with others.

Relevant skills may relate to different areas, including:

5.2 Main observations 133

• Tools, such as programming languages, IDEs, version control systems, and
build tools.

• Work patterns for developing and verifying functions on the different test
layers.

• The ability to conceptualize requirements (and communicate with other
stakeholders) and turn those requirements into working tests and designs.

• Knowing where to go to find up-to-date requirements and how to raise
requirement-related questions.

To build skills in its development teams, the organization used a set of
structured exercises modeled according to the “code kata” concept [101]. By
performing these exercises, the participant would be guided from an empty
project into a fully-fledged web application (using the application and GUI
framework used by the organization). As they were structured in a Test-Driven
Development fashion, the katas emphasized how to test at the unit test level
and the integration test level.

All interviewees appreciated the kata sessions, which allowed the group to
learn about each other’s strengths and weaknesses. As stated by a team member:
“During the kata sessions, I realized that [in my newly formed team], we have
different people with different backgrounds. . . I could see what mistake that they
were doing and I could coach them.”

5.2.4 Maintaining a shared professional culture
When upper management decided to outsource work, the lead developers, who
had prior experience with outsourced products, understood the importance of
maintaining a shared professional culture. To this aim, they required each on-
boarding team (consisting of 6-8 persons) to be present at the main site for
training and during the development phase of their first feature. During this
time (between 8 and 12 weeks for each team), each team would use the afore-
mentioned kata exercises to learn about the application and the expected way of
working. They would then develop their first complete product feature and es-
tablish professional connections with other people who possessed relevant knowl-
edge. There is evidence that this contributed to establishing and maintaining
a shared professional culture: “. . . work culture in [main site] and in India was
almost similar. . . But in [other product] I see lots of difference between every
corner of the world.”

134 Dear Lone Cowboy Programmer - your days are numbered!

The organization used three different checklist-based Definition of Done
(DoD) gates. The first of these DoD checklists focused on whether (or not) the
feature was sufficiently conceptualized to make it clear what functional need
that should be fulfilled. This checklist was signed-off by the requirement engi-
neer responsible for the feature, before involving an entire development team
of 6-8 people. The second DoD checklist focused on the actual development
and functional verification of the feature in question. This checklist would be
signed off by the team leader of the development team once the development
and functional verification of the feature was complete. The third and final
DoD checklist was signed off by the person responsible for system testing, who
attested that either the feature had passed system verification and validation or
that this had been deemed unnecessary. If this were the case, then the person
responsible for system testing would provide reasons why this judgment was
made.

Teams collaborated and helped each other find common synergies and solu-
tions by discussing common problems and solutions in interest groups. These
groups would participate in recurring meetings, with each team being repre-
sented. “It was not unusual to work across team boundaries. . .When we dis-
cussed and found that the structure would not hold any longer, we discussed
how to set the new structure. Then two or three developers would do the re-
structuring and report back the progress.”

5.2.5 The Diversity Aspect

Although there has been criticism that the term “craftsmanship” is gender-
biased, we have chosen to keep the original term in this article since it is fre-
quently used in the literature [83], [86]–[88], [91]. Other venues have taken
different decisions, for instance, the SoCraTes3 conference in Germany has now
adopted a more gender-neutral name.

The actual Software Craftsmanship movement and the principles underlying
Software Craftsmanship stress the importance of professionalism and inclusive-
ness regardless of a person’s gender, culture or nationality.

Of the 155 developers who had contributed to the code base during the
period studied, one-sixth (16.8%) were female, and 80.1% were male. For four
individuals, gender information could not be deduced based on the name stored
in the version control system. Two of our six interviewees were female.

3https://www.socrates-conference.de/history

5.3 Conclusions 135

5.3 Conclusions
In summary, there is little evidence of the “lone cowboy programmer” stereo-
type [13] in our model of Software Craftsmanship. Instead, we view Software
Craftsmanship as “Agile done right”, where Agile teams focus on the long-term
value creation.

Our findings indicate a focus on individual and team accountability, where
issues are raised as soon as they are identified. Trust is built between different
stakeholders, and problems are managed directly, rather than by shifting blame
to another person or team.

Similarly, we observed constant focus on feedback loops on many levels. De-
velopers and managers are expected to shorten and streamline feedback loops
to optimize the distribution and sharing of relevant information. Product de-
velopment follows a highly iterative process and product managers frequently
interact with developers, with the “real users” of the system, or with relevant
proxies.

To enable frequent feedback, verification is highly automated using regression
tests, which are developed alongside the production code, not “after the fact.”
Every development team takes responsibility for the regression test suite. We
noted a culture where developers paid constant attention to the regression test
suite. This included optimizing and stabilizing the tests to maintain a high
level of confidence in them. Verification takes place on many levels, and the
final validation takes place by using proxy customers, who act as the final users
of the system.

Newcomers and onboarded teams are given time and relevant tutoring to
become immersed in a shared professional culture. Cross-team forums are es-
tablished to foster shared norms and behaviors. An open learning environment
where expectations are made clear and relevant feedback is provided bolsters
individual and team skills.

Finally, we found an environment where diversity is valued and where skills
are utilized to provide maximum long-term value for the product as a whole.

136 Dear Lone Cowboy Programmer - your days are numbered!

References

[1] P. Abrahamsson and J. Koskela, “Extreme programming: A survey of
empirical data from a controlled case study,” in Proceedings - 2004 In-
ternational Symposium on Empirical Software Engineering, ISESE ’04.,
IEEE, 2004, pp. 73–82. doi: 10.1109/ISESE.2004.1334895.

[2] E. Alégroth and J. Gonzalez-Huerta, “Towards a Mapping of Software
Technical Debt onto Testware,” in 43rd Euromicro Conference on Soft-
ware Engineering and Advanced Applications, Vienna, Austria, 2017, pp. 404–
411.

[3] M. I. Alhojailan, “Thematic Analysis: A Critical Review of Its Process
and Evaluation,” West East Journal of Social Sciences, vol. 1, pp. 39–47,
2012.

[4] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Managing Techni-
cal Debt in Software Engineering (Dagstuhl Seminar 16162),” Dagstuhl
Reports, vol. 6, no. 4, pp. 110–138, 2016, issn: 2192-5283. doi: 10.4230/
DagRep.6.4.110.

[5] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices Architec-
ture Enables DevOps: Migration to a Cloud-Native Architecture,” IEEE
Software, vol. 33, no. 3, pp. 42–52, May 2016, issn: 07407459. doi: 10.
1109/MS.2016.64.

[6] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Upper Saddle River, NJ, USA: Pearson Education, Inc., 2013, isbn: 978-
0321815736.

[7] K. Beck, Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley Professional, 1999, isbn: 978-0201616415.

[8] ——, Test Driven Development: By Example. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2002, isbn: 0321146530.

https://doi.org/10.1109/ISESE.2004.1334895
https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.4230/DagRep.6.4.110
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64

138 REFERENCES

[9] M. Beedle, M. Devos, Y. Sharon, K. Schwaber, and J. Sutherland, “Scrum:
An extension pattern language for hyperproductive software develop-
ment,” in Pattern languages of program design, 4, N. Harrison, B. Foote,
and H. Rohnert, Eds., vol. 4, Reading, MA: Addison Wesley, 2000, ch. 28,
pp. 637–651, isbn: 978-0201433043.

[10] I. Bergström and A. F. Blackwell, “The practices of programming,”
in Proceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC, vol. 2016-Novem, 2016, pp. 190–198, isbn:
978-1509002528. doi: 10.1109/VLHCC.2016.7739684.

[11] E. Bjarnason, M. Unterkalmsteiner, M. Borg, and E. Engström, “A multi-
case study of agile requirements engineering and the use of test cases as
requirements,” Information and Software Technology, vol. 77, pp. 61–79,
2016.

[12] S. Blakstad and R. Allen, FinTech Revolution: Universal Inclusion in
the New Financial Ecosystem. Springer International Publishing, 2018,
isbn: 978-3319760148.

[13] B. Boehm, “A view of 20th and 21st century software engineering,” in
Proceedings of the 28th International Conference on Software Engineer-
ing, ser. ICSE ’06, Shanghai, China: ACM, 2006, pp. 12–29, isbn: 1-
59593-375-1. doi: 10.1145/1134285.1134288. [Online]. Available: http:
//doi.acm.org/10.1145/1134285.1134288.

[14] V. Braun and V. Clarke, “Using thematic analysis in psychology,” Qual-
itative Research in Psychology, vol. 3, no. 2, pp. 77–101, Jan. 2006, issn:
1478-0887. doi: 10.1191/1478088706qp063oa. arXiv: 1011.1669.

[15] ——, “What can "thematic analysis" offer health and wellbeing researchers?”
International Journal of Qualitative Studies on Health and Well-being,
vol. 9, pp. 20–22, 2014, issn: 17482631. doi: 10.3402/qhw.v9.26152.

[16] R. Britto, D. Šmite, and L.-O. Damm, “Software Architects in Large-
Scale Distributed Projects: An Ericsson Case Study,” IEEE Software,
vol. 33, no. 6, pp. 48–55, Nov. 2016, issn: 0740-7459. doi: 10.1109/
MS . 2016 . 146. [Online]. Available: http : / / ieeexplore . ieee . org /
document/7725230/.

[17] F. P. Brooks, The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition. Pearson Education, 1995, isbn: 978-0132119160.

https://doi.org/10.1109/VLHCC.2016.7739684
https://doi.org/10.1145/1134285.1134288
http://doi.acm.org/10.1145/1134285.1134288
http://doi.acm.org/10.1145/1134285.1134288
https://doi.org/10.1191/1478088706qp063oa
https://arxiv.org/abs/1011.1669
https://doi.org/10.3402/qhw.v9.26152
https://doi.org/10.1109/MS.2016.146
https://doi.org/10.1109/MS.2016.146
http://ieeexplore.ieee.org/document/7725230/
http://ieeexplore.ieee.org/document/7725230/

REFERENCES 139

[18] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture. A System of Patterns. Chich-
ester: John Wiley & Sons, 1996, vol. Vol. 1, p. 476, isbn: 0471958697.

[19] C. Calhoun, Critical Social Theory: Culture, History, and the Challenge
of Difference. Oxford, UK: Wiley-Blackwell, 1995, isbn: 978-1557862884.

[20] A. Causevic, D. Sundmark, and S. Punnekkat, “Factors limiting indus-
trial adoption of test driven development: A systematic review,” in Pro-
ceedings - 4th IEEE International Conference on Software Testing, Ver-
ification, and Validation, ICST 2011, Berlin, Germany, 2011, pp. 337–
346, isbn: 978-0769543420.

[21] O. Cawley, X. Wang, and I. Richardson, “Lean/agile software devel-
opment methodologies in regulated environments - State of the art,”
in International Conference on Lean Enterprise Software and Systems,
vol. 65 LNBIP, Springer Verlag, 2010, pp. 31–36, isbn: 3642164153. doi:
10.1007/978-3-642-16416-3_4.

[22] P. Chatzipetrou, D. Šmite, and R. van Solingen, “When and who leaves
matters: Emerging results from an empirical study of employee turnover,”
in Proceedings of the 12th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement, ser. ESEM ’18, Oulu,
Finland: Association for Computing Machinery, 2018, isbn: 978-1450358231.
doi: 10.1145/3239235.3267431. [Online]. Available: https://doi.org/
10.1145/3239235.3267431.

[23] P. C. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Meson, R. Nord, J. Stafford, P. Merson, R. Nord, and J. Stafford, Doc-
umenting software architectures: views and beyond, 2nd Editio. Pearson
Education, 2010. [Online]. Available: http://dl.acm.org/citation.
cfm?id=599933.

[24] Z. Codabux and B. Williams, “Managing Technical Debt: An Industrial
Case Study,” in Proceedings of the 4th International Workshop on Man-
aging Technical Debt, 2013, pp. 8–15, isbn: 978-1467364430.

[25] M. Cohn, Succeeding with Agile: Software Development Using Scrum.
Pearson Education, 2009, p. 504, isbn: 0321660560.

[26] CollabNet VersionOne, “The 13th annual STATE OF AGILE Report -
2018,” Tech. Rep., 2019. [Online]. Available: https://stateofagile.
com/#ufh- i- 613553418- 13th- annual- state- of- agile- report/
7027494.

https://doi.org/10.1007/978-3-642-16416-3_4
https://doi.org/10.1145/3239235.3267431
https://doi.org/10.1145/3239235.3267431
https://doi.org/10.1145/3239235.3267431
http://dl.acm.org/citation.cfm?id=599933
http://dl.acm.org/citation.cfm?id=599933
https://stateofagile.com/#ufh-i-613553418-13th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-613553418-13th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-613553418-13th-annual-state-of-agile-report/7027494

140 REFERENCES

[27] J. O. Coplien, “Borland software craftsmanship: A new look at process,
quality and productivity,” in Proceedings of the 5th Annual Borland In-
ternational Conference, Orlando, FL, USA, 1994.

[28] L. Crispin and J. Gregory, Agile Testing: A Practical Guide for Testers
and Agile Teams, ser. Addison-Wesley Signature Series (Cohn). Pearson
Education, 2008, isbn: 978-0321616937.

[29] D. S. Cruzes and T. Dybå, “Recommended Steps for Thematic Synthesis
in Software Engineering,” 2011 International Symposium on Empirical
Software Engineering and Measurement, no. 7491, pp. 275–284, 2011.
doi: 10.1109/esem.2011.36.

[30] D. S. Cruzes and T. Dybå, “Research synthesis in software engineering:
A tertiary study,” Information and Software Technology, vol. 53, no. 5,
pp. 440–455, 2011, issn: 09505849. doi: 10.1016/j.infsof.2011.01.
004. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.
2011.01.004.

[31] D. S. Cruzes, T. Dybå, P. Runeson, and M. Höst, “Case studies syn-
thesis: a thematic, cross-case, and narrative synthesis worked example,”
Empirical Software Engineering, vol. 20, no. 6, pp. 1634–1665, 2015, issn:
15737616. doi: 10.1007/s10664-014-9326-8.

[32] W. Cunningham, “The wycash portfolio management system,” ACM
SIGPLAN OOPS Messenger, vol. 4, no. 2, pp. 29–30, 1992.

[33] B. Curtis, H. Krasner, and N. Iscoe, “A field study of the software design
process for large systems,” Commun. ACM, vol. 31, no. 11, pp. 1268–
1287, Nov. 1988, issn: 0001-0782. doi: 10.1145/50087.50089. [Online].
Available: https://doi.org/10.1145/50087.50089.

[34] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal of an
application’s technical debt,” IEEE Software, vol. 29, no. 6, pp. 34–42,
2012.

[35] P. Diebold and M. Dahlem, “Agile practices in practice - A mapping
study,” in 18th International Conference on Evaluation and Assessment
in Software Engineering, Association for Computing Machinery, 2014,
isbn: 978-1450324762. doi: 10.1145/2601248.2601254.

[36] E. W. Dijkstra, “On the role of scientific thought,” in Selected writings
on computing: a personal perspective, Springer, 1982, pp. 60–66.

https://doi.org/10.1109/esem.2011.36
https://doi.org/10.1016/j.infsof.2011.01.004
https://doi.org/10.1016/j.infsof.2011.01.004
http://dx.doi.org/10.1016/j.infsof.2011.01.004
http://dx.doi.org/10.1016/j.infsof.2011.01.004
https://doi.org/10.1007/s10664-014-9326-8
https://doi.org/10.1145/50087.50089
https://doi.org/10.1145/50087.50089
https://doi.org/10.1145/2601248.2601254

REFERENCES 141

[37] E. W. Dijkstra, On the reliability of programs. [Online]. Available: https:
//www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.
html (visited on 08/19/2021).

[38] T. Dogša and D. Batič, “The effectiveness of test-driven development: An
industrial case study,” Software Quality Journal, vol. 19, no. 4, pp. 643–
661, 2011, issn: 15731367. doi: 10.1007/s11219-011-9130-2.

[39] S. Easterbrook, J. Singer, M. A. Storey, and D. Damian, “Selecting em-
pirical methods for software engineering research,” in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and D. I. Sjøberg,
Eds., 2008, pp. 285–311, isbn: 978-1848000438. doi: 10.1007/978-1-
84800-044-5_11.

[40] H. Erdogmus, M. Morisio, and M. Torchiano, “On the effectiveness of
the test-first approach to programming,” IEEE Transactions on Software
Engineering, vol. 31, no. 3, pp. 226–237, Mar. 2005, issn: 0098-5589.

[41] M. Feyh and K. Petersen, “Lean software development measures and
indicators - A systematic mapping study,” in Lecture Notes in Business
Information Processing, vol. 167, Springer Verlag, 2013, pp. 32–47, isbn:
978-3642449291. doi: 10.1007/978-3-642-44930-7_3.

[42] B. Flyvbjerg, “Five misunderstandings about case-study research,” Qual-
itative Inquiry, vol. 12, no. 2, pp. 219–245, 2006. doi: 10.1177/1077800405284363.
[Online]. Available: https://doi.org/10.1177/1077800405284363.

[43] M. Fowler, BeckDesignRules, 2015. [Online]. Available: https://martinfowler.
com/articles/BeckDesignRules.html (visited on 08/08/2020).

[44] ——, Code Ownership, 2006. [Online]. Available: https://martinfowler.
com/bliki/CodeOwnership.html (visited on 06/18/2021).

[45] ——, Microservices, 2014. [Online]. Available: https://martinfowler.
com/articles/microservices.html (visited on 01/08/2020).

[46] M. Fowler, K. Beck, J. Brant, and W. Opdyke, Refactoring: Improving
the Design of Existing Code. Addison-Wesley Professional, 1999, isbn:
978-0201485677.

[47] D. Fucci, H. Erdogmus, B. Turhan, M. Oivo, and N. Juristo, “A dissection
of the test-driven development process: Does it really matter to test-first
or to test-last?” IEEE Transactions on Software Engineering, vol. 43,
no. 7, pp. 597–614, 2017. doi: 10.1109/TSE.2016.2616877.

https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD303.html
https://doi.org/10.1007/s11219-011-9130-2
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-3-642-44930-7_3
https://doi.org/10.1177/1077800405284363
https://doi.org/10.1177/1077800405284363
https://martinfowler.com/articles/BeckDesignRules.html
https://martinfowler.com/articles/BeckDesignRules.html
https://martinfowler.com/bliki/CodeOwnership.html
https://martinfowler.com/bliki/CodeOwnership.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/TSE.2016.2616877

142 REFERENCES

[48] D. Fucci, B. Turhan, and M. Oivo, “On the effects of programming and
testing skills on external quality and productivity in a test-driven devel-
opment context,” in Proceedings of the 19th International Conference on
Evaluation and Assessment in Software Engineering - EASE ’15, 2015,
pp. 1–6, isbn: 978-1450333504. doi: 10.1145/2745802.2745826. [On-
line]. Available: http://dl.acm.org/citation.cfm?doid=2745802.
2745826.

[49] K. Gai, M. Qiu, and X. Sun, “A survey on fintech,” Journal of Network
and Computer Applications, vol. 103, pp. 262–273, 2018, issn: 1084-8045.
doi: https://doi.org/10.1016/j.jnca.2017.10.011.

[50] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, ser. Addison-Wesley Profes-
sional Computing Series. Pearson Education, 1994, isbn: 978-0321700698.

[51] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including
grey literature and conducting multivocal literature reviews in software
engineering,” Information and Software Technology, vol. 106, no. May
2018, pp. 101–121, 2019, issn: 09505849. doi: 10.1016/j.infsof.2018.
09.006. arXiv: 1707.02553. [Online]. Available: https://doi.org/10.
1016/j.infsof.2018.09.006.

[52] T. Gilbert,Human Competence: Engineering Worthy Performance. McGraw-
Hill, 1978, isbn: 978-0070232174.

[53] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine Publishing Company, 1967.

[54] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “Conse-
quences of unhappiness while developing software,” Proceedings - 2017
IEEE/ACM 2nd International Workshop on Emotion Awareness in Soft-
ware Engineering, SEmotion 2017, no. SEmotion, pp. 42–47, 2017. doi:
10.1109/SEmotion.2017.5. arXiv: 1701.05789.

[55] D. Graziotin, X. Wang, and P. Abrahamsson, “Are Happy Developers
More Productive?” In Product-Focused Software Process Improvement,
J. Heidrich, M. Oivo, A. Jedlitschka, and M. T. Baldassarre, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 50–64, isbn: 978-3-642-
39259-7.

[56] C. Haines, Understanding the 4 Rules of Simple Design. Leanpub, 2014.
[Online]. Available: https : / / leanpub . com / 4rulesofsimpledesign
(visited on 04/19/2018).

https://doi.org/10.1145/2745802.2745826
http://dl.acm.org/citation.cfm?doid=2745802.2745826
http://dl.acm.org/citation.cfm?doid=2745802.2745826
https://doi.org/https://doi.org/10.1016/j.jnca.2017.10.011
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2018.09.006
https://arxiv.org/abs/1707.02553
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1109/SEmotion.2017.5
https://arxiv.org/abs/1701.05789
https://leanpub.com/4rulesofsimpledesign

REFERENCES 143

[57] B. Haugset and G. K. Hanssen, “Automated acceptance testing: A lit-
erature review and an industrial case study,” in Agile 2008 Conference,
Toronto, Canada, 2008, pp. 27–38.

[58] B. Haugset and T. Stalhane, “Automated acceptance testing as an agile
requirements engineering practice,” in 2012 45th Hawaii International
Conference on System Sciences, 2012, pp. 5289–5298. doi: 10.1109/
HICSS.2012.127.

[59] R. Hoda, N. Salleh, J. Grundy, and H. M. Tee, “Systematic literature
reviews in agile software development: A tertiary study,” Information
and Software Technology, vol. 85, pp. 60–70, 2017, issn: 09505849. doi:
10.1016/j.infsof.2017.01.007. [Online]. Available: http://dx.doi.
org/10.1016/j.infsof.2017.01.007.

[60] D. Hoover and A. Oshineye, Apprenticeship Patterns: Guidance for the
Aspiring Software Craftsman, ser. Theory in practice. O’Reilly Media,
2009, isbn: 978-1449379407.

[61] A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman
to Master. Pearson Education, 1999, isbn: 978-0132119177.

[62] M. Ivarsson and T. Gorschek, “A method for evaluating rigor and indus-
trial relevance of technology evaluations,” Empirical Software Engineer-
ing, vol. 16, no. 3, pp. 365–395, 2011.

[63] I. Jacobson and E. Seidewitz, “A new software engineering,” Queue,
vol. 12, no. 10, 30:30–30:38, Oct. 2014, issn: 1542-7730. doi: 10.1145/
2685690.2693160. [Online]. Available: http://doi.acm.org/10.1145/
2685690.2693160.

[64] S. Jalali and C. Wohlin, “Global software engineering and agile practices:
A systematic review,” Journal of software: Evolution and Process, vol. 24,
no. 6, pp. 643–659, 2012.

[65] D. Karlström and P. Runeson, “Combining Agile Methods with Stage-
Gate Project Management,” IEEE Software, no. May/June, pp. 43–49,
2005.

[66] G. L. Kelling, J. Q. Wilson, et al., “Broken windows,” Atlantic monthly,
vol. 249, no. 3, pp. 29–38, 1982.

https://doi.org/10.1109/HICSS.2012.127
https://doi.org/10.1109/HICSS.2012.127
https://doi.org/10.1016/j.infsof.2017.01.007
http://dx.doi.org/10.1016/j.infsof.2017.01.007
http://dx.doi.org/10.1016/j.infsof.2017.01.007
https://doi.org/10.1145/2685690.2693160
https://doi.org/10.1145/2685690.2693160
http://doi.acm.org/10.1145/2685690.2693160
http://doi.acm.org/10.1145/2685690.2693160

144 REFERENCES

[67] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactor-
ing challenges and benefits,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering
- FSE ’12, New York, New York, USA: ACM Press, 2012, p. 1, isbn:
978-1450316149. doi: 10.1145/2393596.2393655. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2393596.2393655.

[68] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey,
and S. Linkman, “Systematic literature reviews in software engineering
- A systematic literature review,” Information and Software Technology,
vol. 51, no. 1, pp. 7–15, 2009, issn: 09505849. doi: 10.1016/j.infsof.
2008.09.009. [Online]. Available: http://dx.doi.org/10.1016/j.
infsof.2008.09.009.

[69] B. A. Kitchenham, T. Dybå, and M. Jørgensen, “Evidence-based Soft-
ware Engineering,” in Proceedings. 26th International Conference on Soft-
ware Engineering, 2004, pp. 273–281. doi: 10.1109/ICSE.2004.1317449.

[70] H. K. Klein and M. D. Myers, “A set of principles for conducting and
evaluating interpretive field studies in information systems,” MIS Quar-
terly, vol. 23, no. 1, pp. 67–93, 1999. doi: 10.2307/249410. [Online].
Available: http://www.jstor.org/stable/249410.

[71] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27,
no. 2, pp. 97–111, 1984.

[72] P. Kruchten, R. L. Nord, and I. Ozkaya, Managing Technical Debt: Re-
ducing Friction in Software Development. Addison-Wesley Professional,
2019, isbn: 978-0135645932.

[73] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do de-
velopers update their library dependencies?: An empirical study on the
impact of security advisories on library migration,” Empirical Software
Engineering, vol. 23, no. 1, pp. 384–417, 2018, issn: 15737616. doi: 10.
1007/s10664-017-9521-5. arXiv: 1709.04621.

[74] E. Kupiainen, M. V. Mäntylä, and J. Itkonen, Using metrics in Agile and
Lean software development - A systematic literature review of industrial
studies, 2015. doi: 10.1016/j.infsof.2015.02.005.

[75] C. Larman and B. Vodde, Scaling Lean and Agile Development: Think-
ing and Organizational Tools for Large-Scale Scrum, ser. Agile Software
Development Series. Pearson Education, 2008, isbn: 978-0321617149.

https://doi.org/10.1145/2393596.2393655
http://dl.acm.org/citation.cfm?doid=2393596.2393655
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infsof.2008.09.009
http://dx.doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1109/ICSE.2004.1317449
https://doi.org/10.2307/249410
http://www.jstor.org/stable/249410
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1007/s10664-017-9521-5
https://arxiv.org/abs/1709.04621
https://doi.org/10.1016/j.infsof.2015.02.005

REFERENCES 145

[76] I. Lee and Y. J. Shin, “Fintech: Ecosystem, business models, investment
decisions, and challenges,” Business Horizons, vol. 61, no. 1, pp. 35–46,
2018, issn: 0007-6813. doi: https://doi.org/10.1016/j.bushor.
2017.09.003. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0007681317301246.

[77] P. Lenberg, R. Feldt, and L. G. Wallgren, “Behavioral software engineer-
ing: A definition and systematic literature review,” Journal of Systems
and Software, vol. 107, pp. 15–37, 2015, issn: 01641212. doi: 10.1016/
j.jss.2015.04.084.

[78] K. Lewin, “Action research and minority problems,” Journal of Social
Issues, vol. 2, no. 4, pp. 34–46, 1946.

[79] R. Lindell, “Crafting interaction: The epistemology of modern program-
ming,” Personal Ubiquitous Comput., vol. 18, no. 3, pp. 613–624, Mar.
2014, issn: 1617-4909. doi: 10.1007/s00779- 013- 0687- 6. [Online].
Available: http://dx.doi.org/10.1007/s00779-013-0687-6.

[80] ——, “The Craft of Programming Interaction,” in Proceedings of Inter-
national Workshop on the Interplay between User Experience Evaluation
and Software Development (I-UxSED 2012), 2012, pp. 26–30.

[81] J. Lingel and T. Regan, “"it’s in your spinal cord, it’s in your fingertips":
Practices of tools and craft in building software,” in Proceedings of the
17th ACM Conference on Computer Supported Cooperative Work & So-
cial Computing, ser. CSCW ’14, Baltimore, Maryland, USA: ACM, 2014,
pp. 295–304, isbn: 978-1-4503-2540-0. doi: 10.1145/2531602.2531614.
[Online]. Available: http://doi.acm.org/10.1145/2531602.2531614.

[82] P. Lucena and L. P. Tizzei, “Applying Software Craftsmanship Practices
to a Scrum Project: an Experience Report,” in I Workshop sobre Aspectos
Sociais, Humanos e Econômicos de Software (WASHES 2016), Maceió,
Alagoas, Brazil, 2016. arXiv: 1611 . 05789. [Online]. Available: http :
//arxiv.org/abs/1611.05789.

[83] S. Mancuso, The Software Craftsman: Professionalism, Pragmatism, Pride.
Pearson Education, 2014, isbn: 978-0134052588.

[84] G. Marcionetti, F. Cannizzo, and P. Moser, “The toolbox of a successful
software craftsman,” in Engineering of Computer-Based Systems, IEEE
International Conference on the(ECBS), vol. 00, Mar. 2008, pp. 389–397.
doi: 10.1109/ECBS.2008.48. [Online]. Available: doi.ieeecomputersociety.
org/10.1109/ECBS.2008.48.

https://doi.org/https://doi.org/10.1016/j.bushor.2017.09.003
https://doi.org/https://doi.org/10.1016/j.bushor.2017.09.003
http://www.sciencedirect.com/science/article/pii/S0007681317301246
http://www.sciencedirect.com/science/article/pii/S0007681317301246
https://doi.org/10.1016/j.jss.2015.04.084
https://doi.org/10.1016/j.jss.2015.04.084
https://doi.org/10.1007/s00779-013-0687-6
http://dx.doi.org/10.1007/s00779-013-0687-6
https://doi.org/10.1145/2531602.2531614
http://doi.acm.org/10.1145/2531602.2531614
https://arxiv.org/abs/1611.05789
http://arxiv.org/abs/1611.05789
http://arxiv.org/abs/1611.05789
https://doi.org/10.1109/ECBS.2008.48
doi.ieeecomputersociety.org/10.1109/ECBS.2008.48
doi.ieeecomputersociety.org/10.1109/ECBS.2008.48

146 REFERENCES

[85] R. C. Martin, Clean Agile: Back to Basics. Pearson Education, 2020,
isbn: 978-0-13-578186-9.

[86] ——, Clean Architecture: A Craftsman’s Guide to Software Structure and
Design. Pearson Education, 2017, isbn: 978-0134494326.

[87] ——, Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall, 2008, isbn: 978-0132350884.

[88] ——, The Clean Coder: A Code of Conduct for Professional Program-
mers. Prentice Hall, 2011, isbn: 978-0137081073.

[89] E. M. Maximilien and L. Williams, “Assessing test-driven development at
IBM,” in 25th International Conference on Software Engineering, vol. 6,
Portland, OR USA, 2003, pp. 564–569, isbn: 0-7695-1877-X.

[90] J. A. Maxwell, Qualitative Research Design: An Interactive Approach.
Thousand Oaks, CA, US: Sage Publishing, Inc., 1996, isbn: 978-1412981194.

[91] P. McBreen, Software Craftsmanship: The New Imperative. Addison-
Wesley, 2002, isbn: 978-0201733860.

[92] J. McCarthy, Dynamics of software development. Microsoft Press, Red-
mond, WA, 1995, vol. 3, isbn: 978-1556158230.

[93] G. I. Melnik, “Empirical analyses of executable acceptance test driven de-
velopment,” Ph.D. dissertation, University of Calgary, Calgary, Canada,
2007, isbn: 978-0-494-33806-3.

[94] L. Menand, Ed., Pragmatism: A Reader. New York, NY, USA: Random
House, Inc., 1997, isbn: 978-0679775447.

[95] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson Educa-
tion, 2007, isbn: 978-0131495050.

[96] E. Mourão, J. F. Pimentel, L. Murta, M. Kalinowski, E. Mendes, and
C. Wohlin, “On the performance of hybrid search strategies for system-
atic literature reviews in software engineering,” Information and Software
Technology, vol. 123, p. 106 294, 2020, issn: 0950-5849. doi: https://
doi.org/10.1016/j.infsof.2020.106294. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0950584920300446.

[97] H. Munir, M. Moayyed, and K. Petersen, “Considering rigor and rele-
vance when evaluating test driven development: A systematic review,”
2014. doi: 10.1016/j.infsof.2014.01.002. [Online]. Available: http:
//dx.doi.org/10.1016/j.infsof.2014.01.002.

https://doi.org/https://doi.org/10.1016/j.infsof.2020.106294
https://doi.org/https://doi.org/10.1016/j.infsof.2020.106294
https://www.sciencedirect.com/science/article/pii/S0950584920300446
https://www.sciencedirect.com/science/article/pii/S0950584920300446
https://doi.org/10.1016/j.infsof.2014.01.002
http://dx.doi.org/10.1016/j.infsof.2014.01.002
http://dx.doi.org/10.1016/j.infsof.2014.01.002

REFERENCES 147

[98] N. Nagappan, E. M. Maximilien, T. Bhat, and L. Williams, “Realizing
quality improvement through test driven development: Results and expe-
riences of four industrial teams,” Empirical Software Engineering, vol. 13,
no. 3, pp. 289–302, 2008, issn: 13823256.

[99] M. Paasivaara and C. Lassenius, “Communities of practice in a large
distributed agile software development organization – case ericsson,” In-
formation and Software Technology, vol. 56, no. 12, pp. 1556–1577, 2014,
Special issue: Human Factors in Software Development, issn: 0950-5849.
doi: https://doi.org/10.1016/j.infsof.2014.06.008. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0950584914001475.

[100] M. Pančur and M. Ciglarič, “Impact of test-driven development on pro-
ductivity, code and tests: A controlled experiment,” Information and
Software Technology, vol. 53, no. 6, pp. 557–573, 2011, issn: 09505849.
doi: 10.1016/j.infsof.2011.02.002.

[101] D. Parsons, A. Mathrani, T. Susnjak, and A. Leist, “Coderetreats: Re-
flective practice and the game of life,” IEEE Software, vol. 31, no. 4,
pp. 58–64, Jul. 2014, issn: 0740-7459. doi: 10.1109/MS.2014.25.

[102] D. Parsons, T. Susnjak, and A. Mathrani, “Design from detail: Analyzing
data from a global day of coderetreat,” Information and Software Tech-
nology, vol. 75, pp. 39–55, 2016, issn: 0950-5849. doi: https://doi.
org/10.1016/j.infsof.2016.03.005. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0950584916300519.

[103] K. Petersen, “A palette of lean indicators to detect waste in software
maintenance: A case study,” in Lecture Notes in Business Information
Processing, vol. 111 LNBIP, Springer Verlag, 2012, pp. 108–122, isbn:
978-3642303494. doi: 10.1007/978-3-642-30350-0_8.

[104] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattson, “Systematic Map-
ping Studies in Software Engineering,” in Evaluation and Assessment in
Software Engineering (EASE), vol. 12, 2008.

[105] K. Petersen and C. Wohlin, “Measuring the flow in lean software devel-
opment,” Software - Practice and Experience, vol. 41, no. 9, pp. 975–996,
2011, issn: 00380644. doi: 10.1002/spe.975.

[106] M. Poppendieck and T. Poppendieck, Lean Software Development: An
Agile Toolkit. Addison-Wesley, 2003, isbn: 978-0321150783.

https://doi.org/https://doi.org/10.1016/j.infsof.2014.06.008
http://www.sciencedirect.com/science/article/pii/S0950584914001475
http://www.sciencedirect.com/science/article/pii/S0950584914001475
https://doi.org/10.1016/j.infsof.2011.02.002
https://doi.org/10.1109/MS.2014.25
https://doi.org/https://doi.org/10.1016/j.infsof.2016.03.005
https://doi.org/https://doi.org/10.1016/j.infsof.2016.03.005
http://www.sciencedirect.com/science/article/pii/S0950584916300519
http://www.sciencedirect.com/science/article/pii/S0950584916300519
https://doi.org/10.1007/978-3-642-30350-0_8
https://doi.org/10.1002/spe.975

148 REFERENCES

[107] K. Pugh, Lean-agile acceptance test driven development : better software
through collaboration. Addison-Wesley, 2010, isbn: 978-0321714084.

[108] B. Pyritz, “Craftsmanship versus engineering: Computer programming -
an art or a science?” Bell Labs Technical Journal, vol. 8, no. 3, pp. 101–
104, 2003. doi: 10.1002/bltj.10079. [Online]. Available: https://
onlinelibrary.wiley.com/doi/abs/10.1002/bltj.10079.

[109] P. Ralph and E. Tempero, “Construct validity in software engineer-
ing research and software metrics,” in Proceedings of the 22nd Inter-
national Conference on Evaluation and Assessment in Software Engi-
neering 2018, ser. EASE’18, Christchurch, New Zealand: Association
for Computing Machinery, 2018, pp. 13–23, isbn: 978-1450364034. doi:
10.1145/3210459.3210461. [Online]. Available: https://doi- org.
miman.bib.bth.se/10.1145/3210459.3210461.

[110] M. Richards, Software Architecture Patterns. O’Reilly Media, Inc., 2015,
isbn: 978-1491924242.

[111] C. Robson and K. McCartan, Real world research, 4th Ed. John Wiley
& Sons, 2016, isbn: 978-1-118-74523-6.

[112] P. Rodríguez, K. Mikkonen, P. Kuvaja, M. Oivo, and J. Garbajosa,
“Building lean thinking in a telecom software development organization:
Strengths and challenges,” in Proceedings of the 2013 International Con-
ference on Software and System Process, ser. ICSSP 2013, San Fran-
cisco, CA, USA: ACM, 2013, pp. 98–107, isbn: 978-1-4503-2062-7. doi:
10.1145/2486046.2486064. [Online]. Available: http://doi.acm.org/
10.1145/2486046.2486064.

[113] W. W. Royce, “Managing the development of large software systems,”
in Proceedings, IEEE WESCON, 1970, pp. 1–9. doi: 10.1016/0378-
4754(91)90107-E.

[114] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case study research
in software engineering: Guidelines and examples. John Wiley & Sons,
2012, isbn: 978-1-118-10435-4.

[115] D. Salah, R. F. Paige, and P. Cairns, “A systematic literature review
for Agile development processes and user centred design integration,” in
18th International Conference on Evaluation and Assessment in Software
Engineering, London, UK: Association for Computing Machinery, 2014,
isbn: 978-1450324762. doi: 10.1145/2601248.2601276.

https://doi.org/10.1002/bltj.10079
https://onlinelibrary.wiley.com/doi/abs/10.1002/bltj.10079
https://onlinelibrary.wiley.com/doi/abs/10.1002/bltj.10079
https://doi.org/10.1145/3210459.3210461
https://doi-org.miman.bib.bth.se/10.1145/3210459.3210461
https://doi-org.miman.bib.bth.se/10.1145/3210459.3210461
https://doi.org/10.1145/2486046.2486064
http://doi.acm.org/10.1145/2486046.2486064
http://doi.acm.org/10.1145/2486046.2486064
https://doi.org/10.1016/0378-4754(91)90107-E
https://doi.org/10.1016/0378-4754(91)90107-E
https://doi.org/10.1145/2601248.2601276

REFERENCES 149

[116] J. Saldana, Coding Manual for Qualitative Researchers, 3rd. Sage Pub-
lications, 2015, p. 223, isbn: 1473902495.

[117] A. A. Sawant, R. Robbes, and A. Bacchelli, “On the reaction to depre-
cation of 25,357 clients of 4+1 popular Java APIs,” Proceedings - 2016
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2016, pp. 400–410, 2017. doi: 10.1109/ICSME.2016.64.

[118] ——, “To react, or not to react: Patterns of reaction to API deprecation,”
Empirical Software Engineering, pp. 3824–3870, 2019, issn: 15737616.
doi: 10.1007/s10664-019-09713-w.

[119] T. Sedano, “Towards teaching software craftsmanship,” in 2012 IEEE
25th Conference on Software Engineering Education and Training, Apr.
2012, pp. 95–99. doi: 10.1109/CSEET.2012.29.

[120] P. Seibel, Coders at Work: Reflections on the Craft of Programming,
ser. IT Pro. Apress, 2009, isbn: 978-1430219491.

[121] R. Sennett, The Craftsman. Yale University Press, 2008, isbn: 978-0300149555.
[122] H. Sharp, Y. Dittrich, and C. R. B. de Souza, “The role of ethnographic

studies in empirical software engineering,” IEEE Transactions on Soft-
ware Engineering, vol. 42, no. 8, pp. 786–804, 2016. doi: 10.1109/TSE.
2016.2519887.

[123] A. Silva, T. Araújo, J. Nunes, M. Perkusich, E. Dilorenzo, H. Almeida,
and A. Perkusich, “A systematic review on the use of definition of done
on agile software development projects,” in Proceedings of the 21st In-
ternational Conference on Evaluation and Assessment in Software Engi-
neering, ser. EASE’17, Karlskrona, Sweden: Association for Computing
Machinery, 2017, pp. 364–373, isbn: 978-1450348041. doi: 10 . 1145 /
3084226.3084262. [Online]. Available: https://doi.org/10.1145/
3084226.3084262.

[124] D. Šmite, N. B. Moe, G. Levinta, and M. Floryan, “Spotify guilds: How
to succeed with knowledge sharing in large-scale agile organizations,”
IEEE Software, vol. 36, no. 2, pp. 51–57, 2019. doi: 10.1109/MS.2018.
2886178.

[125] D. Šmite, N. B. Moe, M. Floryan, G. Levinta, and P. Chatzipetrou,
“Spotify guilds,” Commun. ACM, vol. 63, no. 3, pp. 56–61, Feb. 2020,
issn: 0001-0782. doi: 10 . 1145 / 3343146. [Online]. Available: https :
//doi.org/10.1145/3343146.

https://doi.org/10.1109/ICSME.2016.64
https://doi.org/10.1007/s10664-019-09713-w
https://doi.org/10.1109/CSEET.2012.29
https://doi.org/10.1109/TSE.2016.2519887
https://doi.org/10.1109/TSE.2016.2519887
https://doi.org/10.1145/3084226.3084262
https://doi.org/10.1145/3084226.3084262
https://doi.org/10.1145/3084226.3084262
https://doi.org/10.1145/3084226.3084262
https://doi.org/10.1109/MS.2018.2886178
https://doi.org/10.1109/MS.2018.2886178
https://doi.org/10.1145/3343146
https://doi.org/10.1145/3343146
https://doi.org/10.1145/3343146

150 REFERENCES

[126] W. Snipes and S. Ramaswamy, “A proposed sizing model for managing
3rd party code technical debt,” Proceedings - International Conference
on Software Engineering, pp. 72–75, 2018, issn: 02705257. doi: 10.1145/
3194164.3194179.

[127] K. J. Stol, P. Ralph, and B. Fitzgerald, “Grounded Theory in Software
Engineering Research: A Critical Review and Guidelines,” in Proceedings
of the 38th International Conference on Software Engineering, New York,
NY, USA: Association for Computing Machinery, 2016, pp. 120–131,
isbn: 978-1450339001. doi: 10.1145/2884781.2884833.

[128] A. Sundelin, J. Gonzalez-Huerta, and K. Wnuk, “Test-Driving FinTech
Product Development: An Experience Report,” in International Confer-
ence on Product-Focused Software Process Improvement, Springer, 2018,
pp. 219–226, isbn: 978-3030036737. doi: 10.1007/978-3-030-03673-
7_16.

[129] ——, “The hidden cost of backward compatibility: When deprecation
turns into technical debt - An experience report,” in Proceedings - 2020
IEEE/ACM International Conference on Technical Debt, TechDebt 2020,
2020, isbn: 978-1450379601. doi: 10.1145/3387906.3388629.

[130] A. Sundelin, J. Gonzalez-Huerta, K. Wnuk, and T. Gorschek, “Dear Lone
Cowboy Programmer - your days are numbered!” Communications of the
ACM, Submitted 2021-07-22.

[131] ——, “Towards an anatomy of software craftsmanship,” ACM Transac-
tions on Software Engineering and Methodology (TOSEM), to appear,
2021. doi: 10.1145/3468504.

[132] P. Taylor, “Vernacularism in software design practice: Does craftsman-
ship have a place in software engineering?” Australasian Journal of In-
formation Systems, vol. 11, no. 1, 2003, issn: 1449-8618. doi: 10.3127/
ajis.v11i1.143. [Online]. Available: https://journal.acs.org.au/
index.php/ajis/article/view/143.

[133] D. Thomas, “Professional developers practice their kata to stay sharp.,”
Journal of Object Technology, vol. 9, pp. 23–25, Mar. 2010. doi: 10.
5381/jot.2010.9.2.c3.

[134] A. Tosun, O. Dieste, D. Fucci, S. Vegas, B. Turhan, H. Erdogmus, A.
Santos, M. Oivo, K. Toro, J. Jarvinen, and N. Juristo, “An industry ex-
periment on the effects of test-driven development on external quality and
productivity,” Empirical Software Engineering, vol. 22, no. 6, pp. 2763–
2805, Dec. 2017, issn: 15737616. doi: 10.1007/s10664-016-9490-0.

https://doi.org/10.1145/3194164.3194179
https://doi.org/10.1145/3194164.3194179
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1007/978-3-030-03673-7_16
https://doi.org/10.1007/978-3-030-03673-7_16
https://doi.org/10.1145/3387906.3388629
https://doi.org/10.1145/3468504
https://doi.org/10.3127/ajis.v11i1.143
https://doi.org/10.3127/ajis.v11i1.143
https://journal.acs.org.au/index.php/ajis/article/view/143
https://journal.acs.org.au/index.php/ajis/article/view/143
https://doi.org/10.5381/jot.2010.9.2.c3
https://doi.org/10.5381/jot.2010.9.2.c3
https://doi.org/10.1007/s10664-016-9490-0

REFERENCES 151

[135] R. Vallon, B. J. da Silva Estácio, R. Prikladnicki, and T. Grechenig,
“Systematic literature review on agile practices in global software devel-
opment,” Information and Software Technology, vol. 96, no. April 2017,
pp. 161–180, 2018, issn: 09505849. doi: 10.1016/j.infsof.2017.12.
004. [Online]. Available: https://doi.org/10.1016/j.infsof.2017.
12.004.

[136] E. Wenger, Communities of practice: Learning, meaning, and identity.
1999, isbn: 978-0521663632.

[137] R. Westrum, “A typology of organisational cultures,” BMJ Quality &
Safety, vol. 13, no. suppl 2, pp. ii22–ii27, 2004.

[138] R. Winter, Agile Performance Improvement: The New Synergy of Agile
and Human Performance Technology. Apress, 2015, isbn: 978-1484208922.

[139] N. Wirth, “A Brief History of Software Engineering,” IEEE Annals of
the History of Computing, vol. 30, no. 3, pp. 32–39, 2008, issn: 10586180.
doi: 10.1109/MAHC.2008.33.

[140] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th In-
ternational Conference on Evaluation and Assessment in Software Engi-
neering, ser. EASE ’14, London, England, United Kingdom: ACM, 2014,
38:1–38:10, isbn: 978-1-4503-2476-2. doi: 10.1145/2601248.2601268.
[Online]. Available: http://doi.acm.org/10.1145/2601248.2601268.

[141] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in Software Engineering. Berlin: Springer, 2012,
isbn: 978-3-642-29043-5.

[142] R. K. Yin, Case Study Research: Design and Methods, 5th Ed. Sage
Publications, Inc., 2014, isbn: 978-1-4522-4256-9.

[143] E. Zabardast, J. Gonzalez-Huerta, and D. Šmite, “Refactoring , Bug Fix-
ing , and New Development Effect on Technical Debt : An Industrial Case
Study,” in 46th Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA), IEEE, Aug. 2020, pp. 376–384, isbn: 978-
1728195322. doi: 10.1109/SEAA51224.2020.00068. [Online]. Available:
https://ieeexplore.ieee.org/document/9226289/.

[144] O. Zimmermann, “Microservices tenets: Agile approach to service de-
velopment and deployment,” Computer Science - Research and Develop-
ment, vol. 32, no. 3-4, pp. 301–310, 2017, issn: 18652042. doi: 10.1007/
s00450-016-0337-0.

https://doi.org/10.1016/j.infsof.2017.12.004
https://doi.org/10.1016/j.infsof.2017.12.004
https://doi.org/10.1016/j.infsof.2017.12.004
https://doi.org/10.1016/j.infsof.2017.12.004
https://doi.org/10.1109/MAHC.2008.33
https://doi.org/10.1145/2601248.2601268
http://doi.acm.org/10.1145/2601248.2601268
https://doi.org/10.1109/SEAA51224.2020.00068
https://ieeexplore.ieee.org/document/9226289/
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

152 REFERENCES

	Abstract
	Acknowledgements
	Overview of Publications
	Papers in this Thesis

	List of Abbreviations
	Overview
	Introduction
	Background and Related Work
	Research Questions and Contributions
	Methodology
	Conclusion and Future Research

	Test-Driving FinTech Product Development
	Introduction
	Background and Related Work
	Case Description and Analysis Method
	Results and Discussion
	Implications for Research and practice

	Towards an Anatomy of Software Craftsmanship
	Introduction
	Background and Related Work
	Research Methodology
	Systematic Literature Review Results
	The Anatomy of Software Craftsmanship
	Discussion and Implications
	Validity
	Conclusions and Future Work

	The Hidden Cost of Backward Compatibility: When Deprecation Turns into Technical Debt
	Introduction
	Related Work
	Research Methodology
	Results
	Threats to validity
	Conclusions

	Dear Lone Cowboy Programmer - your days are numbered!
	Introduction
	Main observations
	Conclusions

	References

