
Dear Lone Cowboy Programmer - your days are numbered!

Anders Sundelin
∗

Ericsson AB, and
Department of Software

Engineering
Blekinge Institute of

Technology
Karlskrona, Sweden

anders.sundelin@ericsson.com

Javier Gonzalez-Huerta
Department of Software

Engineering
Blekinge Institute of

Technology
Karlskrona, Sweden

jgh@bth.se

Krzysztof Wnuk
Department of Software

Engineering
Blekinge Institute of

Technology
Karlskrona, Sweden

krw@bth.se

Tony Gorschek
Department of Software

Engineering
Blekinge Institute of

Technology
Karlskrona, Sweden

tony.gorschek@bth.se

ABSTRACT
Since its inception, software development has been recog-
nized as a highly technical activity, where, at times, highly
skilled professionals have been tempted to face technical
problems on their own. In the past, software developers,
may have been inclined to create solutions as if they were the
only ones who needed to understand the solutions. However,
nowadays, the disciplines of software development and sys-
tems development have undergone significant change. Cur-
rent software development requires more crafting skills, in
addition to engineering skills. The lone-cowboy program-
mer will soon have no place in properly organised software
development projects. Current practices demand that a pro-
ductive programmer be tasked to develop both working soft-
ware (as claimed in the Agile Manifesto) and well crafted
software. Accountability, pride in one’s work, continuous
learning and mentorship are characteristics of the profes-
sion that we should promote if we want to enable an attitude
of craftsmanship within software development. This paper
provides experiences of craftsmanship, and argues why soft-
ware craftsmanship is good for the practitioner and software
development organizations. To support this claim, we have
analysed the development of a product that was developed
by following several craftsmanship principles. We observed
the product’s development for seven years, and interviewed
several professionals who were involved in its development.

1. INTRODUCTION
Software engineering emerged as a professional practice in

the late 1960s as a reaction to the “software crafting” era,

∗industrial PhD Candidate at BTH

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2021 - authors’ copy ACM submitted to CACM ...$5.00.

where the “code and fix” approach was prevalent [3]. At
this time, a “hacker culture” fostered a culture of “cowboy
programmers,” who could hastily patch together something
during an“all-nighter” to meet an important deadline. How-
ever, the efforts of these cowboy programmers often led to
code that was unmaintainable and often confusing.

Today, programmers enjoy access to tools that can be
used to develop and manage software that their 1960s coun-
terparts could only dream about. Efficiency gains and the
standardization of hardware, operating systems, and devel-
opment and collaboration tools have tremendously increased
the development potential of a single developer. This could
be one reason why the popularity of the“lonely programmer”
mentality remains surprisingly prevalent among software de-
velopers and engineers.

The advent of Agile Software Development and its focus
on rapid software delivery has perhaps reinforced the desir-
ability of remaining a “cowboy programmer” for some who
may even be willing to sacrificing quality aspects for the
sake of fast delivery. The lack of a long-term perspective,
and a disregard for the skills needed to stay productive over
time, appear to be two of the main challenges facing those
that strive to introduce the concept and practice of agility
to software development organizations.

The software industry’s level of adoption of Agile Mani-
festo principles, in particular its perceived lack of focus on
the more technical practices, prompted the formulation of
the Manifesto for Software Craftsmanship1 in 2009. The
Software Craftsmanship Manifesto incorporates the follow-
ing values:

• Not only working software, but also well-crafted soft-
ware.

• Not only responding to change, but also steadily adding
value.

• Not only individuals and interactions, but also a com-
munity of professionals.

1https://manifesto.softwarecraftsmanship.org/

• Not only customer collaboration, but also productive
partnerships.

Several scholars have commented on software craftsman-
ship. For example, Jacobson [7] has argued that engineering
is a craft that is supported by theory, while Bergtröm and
Blackwell [1] argue that professional practice is “craftwork.”
In their empirical study, Lingel and Regan [8] derived differ-
ent conceptualizations of the concept of “craft” in building
software by using a sample of twelve participants, collecting
subjective opinions via interviews and a focus group. Lu-
cena and Tizzei [9], on the other hand, present a so-called
“experience report” (written from the perspective of a team
member) on a Scrum project that applied the craftsmanship
principles.

For the present study, we followed a project aimed at de-
veloping a financial industry product over seven years. Al-
ready at the inception of the project, the developers were
inspired by Software Craftsmanship principles. Throughout
the project, we found the following themes to be highly in-
fluential to the performed work:

• Maintain a long-term value vision, where both individ-
uals and teams take accountability towards stakehold-
ers, including other developers and business owners.

• Focus on short feedback loops at many levels, em-
phasising shortening feedback loops wherever possible
while still providing clear, unambiguous, and relevant
feedback.

• Use code kata exercises to show the expected prod-
uct development methods, thus facilitating both short
feedback loops and a long-term value vision.

• Foster a shared professional culture by keeping teams
aligned and sharing a common way of working across
development sites and time zones.

This article details how software craftsmanship works in
practice. The project that we followed started with a single
team of 9 developers but grew to encompass about 80 devel-
opers on two continents. The principles of clean code [11]
and software craftsmanship were applied during the whole
evolution of the system, and the consequences of adopting
these principles are described in this article.

The product that we studied
We followed the evolution of a transaction-intensive
application in the financial transfer domain from its
conceptualization in the start-up phase, through its
first installation at a customer site, to its expansion
into approximately 15 different installations. It cur-
rently serves approximately 100 million customers.
During our study, we also analyzed quantitative data
from software development repositories and comple-
mented data with interviews with individuals who
were crucial to product development.
Approximately 25 developers contributed to the first
release of the system in 2010. Development also in-
volved a few requirement engineers, verification en-
gineers, and various management roles. The number
of developers fluctuated over time, with a mean of 48
developers and a maximum of 91. On average, each
developer stayed nearly two years in the product,
although five developers stayed the entire studied
period, ending in 2016.

How we performed the study
We conducted six interviews with developers who
were involved in the project, including the lead sys-
tem architect. To increase the reliability of our
study, we also sought corroborating evidence from
an archival analysis of several artifacts, including
requirements, design documents, code repositories
(Git), and fault management systems.
To gain a broader picture of software craftsmanship,
we performed a systematic literature review using a
process of forward and backward snowballing. We
began with nine seed papers. After four snowball
iterations, we found an additional nine papers on
the subject. Based on these papers, we then con-
structed an informed and flexible interview proto-
col. After transcribing and coding the interviews,
we also thematically coded eleven books referenced
by the reviewed academic papers. Based on the find-
ings from the papers, the books, and the interviews,
we extracted several codes and established their rela-
tionships. We presented this information as a mind
map. We published the complete details of these
findings in [17].
From late 2009 until October 2016, the first author
was part of a product development team. The sec-
ond and third authors were used as support func-
tions during the interviews and during the analysis
phase of the study to counter any resulting bias.

2. MAIN OBSERVATIONS

2.1 Individual accountability and team account-
ability

Being accountable is one of the main principles of software
craftsmanship:

It is an attitude of honesty, of honor, of self-
respect, and of pride. It is a willingness to ac-
cept the dire responsibility of being a craftsman

and an engineer. That responsibility includes
working well and working clean. It includes com-
municating well and estimating faithfully. It in-
volves managing your time and facing difficult
risk-reward decisions. [12]

With mechanisms such as signing code artifacts, we ensure
that individuals and teams feel accountable for the code they
develop. Instilling accountability and pride are two solutions
that can be used to counter the “just get it done” syndrome
that seems to affect some knowledge-centric professions.

Indeed, accountability is now part of a professional prac-
tice that has been standardized, for example, in success-
ful Open-Source projects, where a responsible release mas-
ter signs off the code before being merged into the com-
plete project. Since a team should be accountable and au-
tonomous, this autonomy should enable them to take end-to-
end responsibility for the developed features or components.

In the system that we studied, different ownership mod-
els were deployed to enable the level of autonomy described
above. The main business logic was implemented in the
context of a weak ownership model [4], where the teams
took responsibility for the modules they developed, while
simultaneously keeping an eye on changes that were made
by developers outside their team. However, especially in
the early stages of the product’s development, the core of
the transactions engine was subject to a much more formal
code ownership model [4], where only a small set of devel-
opers were allowed to make changes in their closely guarded
modules.

Main lessons — accountability

1. Development teams take on end-to-end re-
sponsibility to define, develop, and test solu-
tions. Requirement engineers (e.g., a “Product
Owner” role) performed initial conceptualiza-
tion. Once development started, the develop-
ment team constantly communicated with the
PO throughout the development work, seeking
to clarify and get feedback on solutions and
their consequences.

2. Code contributions are signed using personal
certificates, thus emphasizing the importance
of personal responsibility. The application has
an internal Certificate Authority (CA) verify-
ing the signatures.

3. Teams take part in the maintenance of the con-
tinuous integration environment. In particu-
lar, this work involves keeping the test base
green, fixing flaky tests, and avoiding unneces-
sary long-running tests. When taking short-
cuts such as disabling certain test cases to
meet certain deadlines, specific tools are used
to keep track of which developer that disabled
what specific test case. After a grace period,
these developers are reminded to take action
for the test case in question.

4. Tests are as necessary as the production code
itself and are used as “the continuously ex-
ecuting requirement specification of expected
behavior” [12]. While most tests are auto-
mated, a small minority in the validation area
is not automated (for example, validating in-
structions for end-users).

5. Automated regression tests grow faster than
the production code, so the tests have to be
layered, with testing done at the lowest layer
where it makes sense. Because of the large
amount of produced test code, it is equally im-
portant to clean up the test code and the pro-
duction code.

2.2 Feedback loops

2.2.1 Shortening the Feedback Loop: Automation and
Layering the architecture

Short feedback loops are a means to avoid bad habits and
give developers early feedback on their work. Short feedback
loops are probably the only way one can make progress with
incremental, iterative development.

Using short feedback loops, organizations can adjust how
the project should proceed before it progresses too far in an
undesired direction.

Incremental development is the first stage at which feed-
back loops can be shortened. This approach can be con-
ceived as a way of “growing software” instead of “building”
it in a more traditional fashion. In parallel with the devel-
opment process, prototyping and testing are obvious choices

if one wishes to make the feedback loops shorter.
In the system that we studied, the organization strove

to break the requirements down into smaller (XSmall and
Small sizes) features, as can be seen in Table 1. Instead
of spending months on developing several extensive features
as chunks of related functions, the organization’s focus was
on obtaining early feedback, both from the QA teams, but
even more importantly, from actual installations. Half of the
XSmall stories were developed (including their analysis and
design) in less than 22 days, the equivalent of one sprint.
If we examine the pure development time (extracted from
git-logs), we note that 50% of the stories were developed in
less than 13 days. The days spent in QA portrays the time
each feature spent in system testing and verification2. All
of the interview participants mentioned short feedback loops
as one of the organization’s strong points.

However, to achieve the organization’s goals, the system
and software architecture need to be designed with testa-
bility in mind and support testing at different levels (such
as the unit, integration, functional, and system levels) in a
manner that is as simple as possible. The teams will also
have to maintain a craftsman’s attitude; caring about the
code and caring about the test base.

Table 1: Elapsed calendar days per feature size (using T-
Shirt sizes estimated before starting development) and activ-
ity. No QA is the number of features where planned system
verification was deemed unnecessary, x̂ is the number of days
required to develop or system test 50% of the stories

Development No QA QA Performed
Est.size #Stories x̂ #Stories #Stories x̂
X-Small 122 22 37 85 7
Small 109 29 24 85 8
Medium 72 47.5 10 62 16.5
Large 13 62 1 12 20.5

2The development and testing departments used three-week
sprints. The sprint time of the development and testing
department might explain the average time that was spent
on developing and testing large features (i.e., three sprints
and one sprint, respectively)

Main lessons related to shortening feedback
loops

1. Releases are frequently made, either to the sys-
tem testing organization or directly to the cus-
tomer. This requires automated test suites
with regression tests in place, These tests
need to be frequently executed and adequately
maintained.

2. To enable frequent releases, we need to pro-
vide well-functioning and straightforward sup-
port for upgrades. This includes data models
on persistent storage, in particular.

3. Operate a continuous integration loop, with
teams constantly responding to feedback. As
the product grows, the organization needs to
optimize its feedback loops to keep them short.
Continuous integration builds can be paral-
lelized, and tests can be rewritten at a lower
level.

4. Layered testing becomes crucial to shortening
feedback loops. Each team should review and
test what they develop, ensuring that the unit
and functional tests they develop satisfy the
new requirements. In some cases, this internal
testing procedure (together with the regression
test suite) can be sufficient to quality-assure
the product.

5. Having short feedback loops and layered ar-
chitectures enables developers to refactor their
code, provided that they have a safety net to
detect potential bugs introduced by the refac-
torings that were performed.

6. Human work is precious. Consequently, it
should be focused on content, not style. Use
tools that can provide automated feedback,
such as static code analyzers and standard for-
matting tools, to allow colleagues to focus on
reviewing the content instead of the style.

2.2.2 The dark side of test-focused development
When requirements are specified as executable test cases,

conflicting forces emerge. Such forces need to be balanced
against each other. For example, on the one hand, each test
case should verify as much functionality of the product as
possible. On the other hand, for validation purposes, each
test case should be readable by domain experts. Plain-text-
based methods and tools such as BDD (Behavior-Driven De-
velopment) are often advocated since they enable the vali-
dation process [2, 5].

Because the number of possible test scenarios (including
parameter validation and negative testing) usually outnum-
bers the product’s actual functionality, the number of test
cases would grow faster than the production code. However,
plain-text languages and BDD tools often do not support
refactoring and strongly typed navigation (“Find usages”)
out of the box.

Consequently, it is more difficult harder to refactor the
test base into a more readable representation. Some orga-
nizations also have explicit policy rules against refactoring
test code, citing the“Quis custodiet ipsos custodes”principle
(i.e., raising the question: Who will ensure that the refac-
tored test code behaves in the same way, finding the same
faults as the original test code?)

Thus, there has to be an explicitly stated principle that
tests need to be pushed down to the lowest level where they
make sense. While keeping a single acceptance test case
written in BDD style may well be preferable for validation
purposes (i.e., ensuring that the function works as expected
by the requirement owner), a caring developer would not
use this type of testing to perform parameter validation of
input parameters. Because of the large number of needed
tests to perform adequate parameter validation, this type of
testing is better done in a language that supports refactor-
ing and automated restructuring. Typically, these are unit
tests written in the same language as the production code.
Performing parameter validation as unit tests also have the
benefit of shortening the feedback loop. The architecture
should thus encourage and enforce (to the extent possible)
layered testing, and the organization should set itself the
goal of performing tests at“the lowest level where they make
sense”.

The principles of (i) clean code and (ii) technical debt
management apply to both production code and test code.
In particular, care has to be taken when dealing with dep-
recated code to prevent the spread of its usage in the test
base [16].

2.3 Skills

2.3.1 Pride vs. Humility
Developers are expected to show a degree of pride in their

product and work process so that they are motivated to
continue with their preferred ways of working. Typically,
this attitude will affect how the developer will respond to the
inevitable time pressure. As one developer stated, related
to the pressure to “deliver faster,” without sufficient testing:
“It’s about what pride the team has. We don’t hack together
something and just leave it. When we are done, then we
really are done.”

Conversely, the developer’s pride needs to be balanced
against a sense of humility. Developers should realize that
they are on a learning path, together with other stakehold-
ers, exploring the potential solutions whose complexity needs
to be weighed against the value of the problem it solves [6,
12].

2.3.2 Learning how to say Yes and No
Learning how to say “No” in a professional manner is an

essential skill. For example, a developer should only commit
to work tasks that the team estimates it can complete while
upholding standards regarding, in particular, the verifica-
tion and validation process. Usually, this involves time con-
straints and deadlines, which the organization tackled by:
“Having a dialogue. . . ‘No, we are not done yet, because. . . ’”

Entering into a productive partnership requires establish-
ing trust between individual teams and other stakeholders.
Teams use common discussion forums to discuss acceptable
solutions and acceptable criteria for the verification process.
In our study, we noted that the lead developer/architect fo-

rum focused on and reviewed the solution. In contrast, the
verification forum focused on what to test, how to test the
solution efficiently and improve the verification procedure’s
overall performance.

When they were under time pressure, instead of perform-
ing fewer verification tests, the teams provided feedback to
the stakeholders. Typically, this caused discussions to take
place, with the intent to slice features into smaller parts,
developing the most relevant (and therefore valuable) parts
first. For a relationship of trust between development teams
and stakeholders to be established, potential concerns have
to be raised quickly so that the slicing is done as early as
possible.

2.3.3 Developing individual skills and team skills
Individual skills are undoubtedly important for a crafts-

man, but equally important is the ability to develop and
share these skills with others.

Relevant skills may relate to different areas, including:

• Tools, such as programming languages, IDEs, version
control systems, and build tools.

• Work patterns for developing and verifying functions
on the different test layers.

• The ability to conceptualize requirements (and com-
municate with other stakeholders) and turn those re-
quirements into working tests and designs.

• Knowing where to go to find up-to-date requirements
and how to raise requirement-related questions.

To build skills in its development teams, the organiza-
tion used a set of structured exercises modeled according to
the “code kata” concept [15]. By performing these exercises,
the participant would be guided from an empty project into
a fully-fledged web application (using the application and
GUI framework used by the organization). As they were
structured in a Test-Driven Development fashion, the katas
emphasized how to test at the unit test level and the inte-
gration test level.

All interviewees appreciated the kata sessions, which al-
lowed the group to learn about each other’s strengths and
weaknesses. As stated by a team member: “During the
kata sessions, I realized that [in my newly formed team], we
have different people with different backgrounds. . . I could
see what mistake that they were doing and I could coach
them.”

2.4 Maintaining a shared professional culture
When upper management decided to outsource work, the

lead developers, who had prior experience with outsourced
products, understood the importance of maintaining a shared
professional culture. To this aim, they required each on-
boarding team (consisting of 6-8 persons) to be present at
the main site for training and during the development phase
of their first feature. During this time (between 8 and 12
weeks for each team), each team would use the aforemen-
tioned kata exercises to learn about the application and the
expected way of working. They would then develop their
first complete product feature and establish professional con-
nections with other people who possessed relevant knowl-
edge. There is evidence that this contributed to establishing

and maintaining a shared professional culture: “. . . work cul-
ture in [main site] and in India was almost similar. . . But in
[other product] I see lots of difference between every corner
of the world.”

The organization used three different checklist-based Def-
inition of Done (DoD) gates. The first of these DoD check-
lists focused on whether (or not) the feature was sufficiently
conceptualized to make it clear what functional need that
should be fulfilled. This checklist was signed-off by the re-
quirement engineer responsible for the feature, before involv-
ing an entire development team of 6-8 people. The second
DoD checklist focused on the actual development and func-
tional verification of the feature in question. This checklist
would be signed off by the team leader of the development
team once the development and functional verification of
the feature was complete. The third and final DoD checklist
was signed off by the person responsible for system test-
ing, who attested that either the feature had passed system
verification and validation or that this had been deemed un-
necessary. If this were the case, then the person responsible
for system testing would provide reasons why this judgment
was made.

Teams collaborated and helped each other find common
synergies and solutions by discussing common problems and
solutions in interest groups. These groups would participate
in recurring meetings, with each team being represented. “It
was not unusual to work across team boundaries. . . When we
discussed and found that the structure would not hold any
longer, we discussed how to set the new structure. Then two
or three developers would do the restructuring and report
back the progress.”

2.5 The Diversity Aspect
Although there has been criticism that the term “crafts-

manship” is gender-biased, we have chosen to keep the orig-
inal term in this article since it is frequently used in the
literature [10, 11, 12, 13, 14]. Other venues have taken dif-
ferent decisions, for instance, the SoCraTes3 conference in
Germany has now adopted a more gender-neutral name.

The actual Software Craftsmanship movement and the
principles underlying Software Craftsmanship stress the im-
portance of professionalism and inclusiveness regardless of a
person’s gender, culture or nationality.

Of the 155 developers who had contributed to the code
base during the period studied, one-sixth (16.8%) were fe-
male, and 80.1% were male. For four individuals, gender
information could not be deduced based on the name stored
in the version control system. Two of our six interviewees
were female.

3. CONCLUSIONS
In summary, there is little evidence of the “lone cowboy

programmer” stereotype [3] in our model of Software Crafts-
manship. Instead, we view Software Craftsmanship as“Agile
done right”, where Agile teams focus on the long-term value
creation.

Our findings indicate a focus on individual and team ac-
countability, where issues are raised as soon as they are
identified. Trust is built between different stakeholders, and
problems are managed directly, rather than by shifting blame
to another person or team.

3https://www.socrates-conference.de/history

Similarly, we observed constant focus on feedback loops
on many levels. Developers and managers are expected
to shorten and streamline feedback loops to optimize the
distribution and sharing of relevant information. Product
development follows a highly iterative process and product
managers frequently interact with developers, with the “real
users” of the system, or with relevant proxies.

To enable frequent feedback, verification is highly auto-
mated using regression tests, which are developed alongside
the production code, not “after the fact.” Every development
team takes responsibility for the regression test suite. We
noted a culture where developers paid constant attention to
the regression test suite. This included optimizing and sta-
bilizing the tests to maintain a high level of confidence in
them. Verification takes place on many levels, and the final
validation takes place by using proxy customers, who act as
the final users of the system.

Newcomers and onboarded teams are given time and rel-
evant tutoring to become immersed in a shared professional
culture. Cross-team forums are established to foster shared
norms and behaviors. An open learning environment where
expectations are made clear and relevant feedback is pro-
vided bolsters individual and team skills.

Finally, we found an environment where diversity is valued
and where skills are utilized to provide maximum long-term
value for the product as a whole.

4. ACKNOWLEDGMENTS
This research was supported by the KKS PLEng 2.0 grant

at Blekinge University of Technology, and Ericsson AB, through
the SHADE KKS Hög project with ref: 20170176, and through
the KKS SERT Research Profile with ref. 2018010 project
both at Blekinge Institute of Technology, SERL Sweden.

5. REFERENCES
[1] I. Bergström and A. F. Blackwell. The practices of

programming. In Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing,
VL/HCC, volume 2016-Novem, pages 190–198, 2016.

[2] E. Bjarnason, M. Unterkalmsteiner, M. Borg, and
E. Engström. A multi-case study of agile requirements
engineering and the use of test cases as requirements.
Information and Software Technology, 77:61–79, 2016.

[3] B. Boehm. A View of 20th and 21st Century Software
Engineering. In Proceedings of the 28th International
Conference on Software Engineering, ICSE ’06, pages
12–29, New York, NY, USA, 2006. ACM.

[4] M. Fowler. Code Ownership. At https:

//martinfowler.com/bliki/CodeOwnership.html,
seen: 2021-06-18.

[5] B. Haugset and T. Stalhane. Automated acceptance
testing as an agile requirements engineering practice.
In 2012 45th Hawaii International Conference on
System Sciences, pages 5289–5298, 2012.

[6] D. Hoover and A. Oshineye. Apprenticeship Patterns:
Guidance for the Aspiring Software Craftsman.
Theory in practice. O’Reilly Media, 2009.

[7] I. Jacobson and E. Seidewitz. A new software
engineering. Queue, 12(10):30:30–30:38, Oct. 2014.

[8] J. Lingel and T. Regan. ”it’s in your spinal cord, it’s
in your fingertips”: Practices of tools and craft in
building software. In Proceedings of the 17th ACM

Conference on Computer Supported Cooperative Work
& Social Computing, CSCW ’14, pages 295–304,
New York, NY, USA, 2014. ACM.

[9] P. Lucena and L. P. Tizzei. Applying software
craftsmanship practices to a scrum project: an
experience report. CoRR, abs/1611.05789, 2016.

[10] S. Mancuso. The Software Craftsman:
Professionalism, Pragmatism, Pride. Robert C.
Martin Series. Pearson Education, 2014.

[11] R. C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Robert C. Martin Series.
Pearson Education, 2008.

[12] R. C. Martin. The clean coder: a code of conduct for
professional programmers. Pearson Education, 2011.

[13] R. C. Martin. Clean Architecture: A Craftsman’s
Guide to Software Structure and Design. Robert C.
Martin Series. Pearson Education, 2017.

[14] P. McBreen. Software Craftsmanship: The New
Imperative. Addison-Wesley, 2002.

[15] D. Parsons, A. Mathrani, T. Susnjak, and A. Leist.
Coderetreats: Reflective practice and the game of life.
IEEE Software, 31(4):58–64, July 2014.

[16] A. Sundelin, J. Gonzalez-Huerta, and K. Wnuk. The
hidden cost of backward compatibility: When
deprecation turns into technical debt - An experience
report. In Proceedings - 2020 IEEE/ACM
International Conference on Technical Debt, TechDebt
2020, 2020.

[17] A. Sundelin, J. Gonzalez-Huerta, K. Wnuk, and
T. Gorschek. Towards an anatomy of software
craftsmanship. ACM Transactions on Software
Engineering and Methodology (TOSEM), page to
appear, 2021.

