
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Towards an Anatomy of Software Craftsmanship

ANDERS SUNDELIN, Ericsson AB and Software Engineering Research Lab, Blekinge Institute of Technol-
ogy, Sweden
JAVIER GONZALEZ-HUERTA, KRZYSZTOF WNUK, and TONY GORSCHEK, Software
Engineering Research Lab, Blekinge Institute of Technology, Sweden

Context: The concept of software craftsmanship has early roots in computing, and in 2009, the Manifesto for
Software Craftsmanship was formulated as a reaction to how the Agile methods were practiced and taught.
But software craftsmanship has seldom been studied from a software engineering perspective.

Objective: The objective of this paper is to systematize an anatomy of software craftsmanship through
literature studies and a longitudinal case study.

Method: We performed a snowballing literature review based on an initial set of nine papers, resulting
in 18 papers and 11 books. We also performed a case study following seven years of software development of
a product for the financial market, eliciting qualitative and quantitative results. We used thematic coding to
synthesize the results into categories.

Results: The resulting anatomy is centered around four themes, containing 17 principles and 47 hierarchical
practices connected to the principles. We present the identified practices based on the experiences gathered
from the case study, triangulating with the literature results.

Conclusion: We provide our systematically derived anatomy of software craftsmanship with the goal of
inspiring more research into the principles and practices of software craftsmanship and how these relate to
other principles within software engineering in general.

CCS Concepts: • Software and its engineering → Designing software; Software design techniques; Soft-
ware development methods; Software development techniques;Collaboration in software develop-
ment; • Applied computing → Electronic funds transfer .

Additional Key Words and Phrases: software craftsmanship, principles of software development, deliberate
practice

ACM Reference Format:
Anders Sundelin, Javier Gonzalez-Huerta, Krzysztof Wnuk, and Tony Gorschek. 2020. Towards an Anatomy
of Software Craftsmanship. 1, 1 (June 2020), 50 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
The notion that programmers should be responsible for what they produce has early roots. Al-
ready in 1975, Brooks [13] mention “invention and craftsmanship” as prerequisites for efficient
optimization techniques, and he also envisioned “the surgical team” as an efficient way of develop-
ing mission-critical software. In 2002, McBreen published a book [57], formalizing the software

Authors’ addresses: Anders Sundelin, anders.sundelin@ericsson.com,anders.sundelin@bth.se, Ericsson AB and Software
Engineering Research Lab, Blekinge Institute of Technology, Karlskrona, Sweden; Javier Gonzalez-Huerta, javier.gonzalez.
huerta@bth.se; Krzysztof Wnuk, krzysztof.wnuk@bth.se; Tony Gorschek, tony.gorschek@bth.se, Software Engineering
Research Lab, Blekinge Institute of Technology, Karlskrona, Sweden.

Anders Sundelin, 2021. This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was accepted on 2021-05-27 to be published in a future number of ACM
Transactions on Software Engineering and Methodology , http://dx.doi.org/10.1145/{number}.

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1145/1122445.1122456

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Sundelin and Gonzalez-Huerta, et al.

craftsmanship concept, and since then, several books have been written on the subject [52, 54–56].
Another early inspirational work was published in 1999 by Hunt and Thomas [38].

The Manifesto for Software Craftsmanship1 was published in March 2009, seven years after the
Agile Manifesto2. The original signatories intended to address what they saw as deficiencies in
how the Agile Manifesto principles had turned out in practice, as taught by coaches and certified
institutions, and to emphasize the need to “make the thing right.” The Software Craftsmanship
movement lives on, twelve years after the manifesto was published. There are associated communi-
ties and conferences such as Socrates3 in Europe and SCNA4 in North America. However, we have
not found any systematic definition of software craftsmanship principles and practices in research.
This paper moves towards this goal by providing an anatomy of software craftsmanship based

on a systematic literature study and a longitudinal case study of a software product developed
by an organization that was following software craftsmanship principles. In doing so, it moves
towards systematizing and making explicit the software craftsmanship principles and practices
to the broader research community, as there seems to be a lack of research papers in this area, as
evidenced in Section 4.

The case study subject was a unit within Ericsson developing a new software product for seven
years. The product operates in the financial sector and is in use in around twenty installations
around the world. Due to the stringent requirements of financial systems and the values of the
developing organization, the product was developed from scratch, highly inspired by craftsmanship
principles, such as test-focused, agile, and lean software development, with a high focus on clean
code and refactoring. These principles were also spread to new developers joining the product.
The paper is structured as follows: In Section 2, we give the background and related work of

software craftsmanship and define the terms we use throughout the paper. In Section 3, we report on
our research methodology, with Section 3.1 focusing on the systematic literature study, Section 3.2
focusing on the case study methodology, including the studied context, and Section 3.3 focusing
on the process of building the anatomy. In Section 4, we report on the results of the SLR, and in
Section 5, we merge this with the quantitative and qualitative results of the case study to produce
our version of the anatomy of software craftsmanship. In Section 6, we discuss the implications for
the software development community at large. In Section 7, we discuss the threats to the validity
of the study. In Section 8, we draw on the analysis, outline future work and research directions,
and make conclusions.

2 BACKGROUND AND RELATED WORK
The Craftsmanship movement builds upon Agile and Lean principles and practices, but with a
stronger emphasis on building high-quality products by teams with a shared professional culture.
The Manifesto for Software Craftsmanship was published in March 2009, following a summit in
December 2008, where around 30 participants gathered to discuss what they perceived had been
lost as the software industry adopted the Agile Manifesto. In particular, the lack of focus on the
more technical practices in Agile processes such as Extreme Programming (XP) was a concern.
There have been several books and seminal works before 2008 (e.g., the books by Brooks [13],

Hunt & Thomas [38], McBreen [57], Martin [54–56] and later also Mancuso [52]) that provide
insights into the concept, the practices, and the potential benefits of Software Craftsmanship.
However, very few research works delve into the formalization of the concept, with its principles

1http://manifesto.softwarecraftsmanship.org/
2http://www.agilemanifesto.org/
3https://www.socrates-conference.de/
4https://scna.softwarecraftsmanship.com/

, Vol. 1, No. 1, Article . Publication date: June 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Towards an Anatomy of Software Craftsmanship 3

and practices, with buttressing, real-world empirical evidence from cases where craftsmanship
principles were put into operation.

If we look at the Agile Software Development, on the one hand, there are a plethora of Systematic
Literature Reviews (e.g., [41, 74, 84]), Systematic Mapping Studies (e.g., [24]) and even Tertiary
Studies (e.g., [36]) that portray how academia has studied Agile Software Development. In addition,
several studies report on the benefits of Agile and XP practices in industrial settings (e.g., [42], [26],
and [2]). Likewise, multiple studies address the potential benefits and drawbacks of Test-Driven
Development, with several experiments (e.g., [30, 83]), case studies (e.g., [26]), and Systematic
Literature Reviews (e.g., [61])

Lean Software Development was popularized by Poppendieck & Poppendieck [67] and has been
studied in an industrial setting [65, 66]. Several Systematic Literature Reviews and Systematic
Mapping Studies report results on metrics related to Agile and Lean software development and
their relevance in the software industry [15, 27, 46].

3 RESEARCH METHODOLOGY
This paper uses a systematic literature review (SLR) method, using Wohlin’s snowballing ap-
proach [90], and a case study method following guidelines by Runeson et al. [73]. We focus on the
following research questions:

RQ1 How has prior literature described the principles and practices of software craftsmanship?
RQ2 Which of the identified principles and practices canwe see applied in a real-life, commercial

case study?
RQ3 What are the consequences of applying these principles and practices of software crafts-

manship?
We aim at answering RQ1 by performing a systematic literature review. We aim at answering RQ2
by collecting quantitative measures on the studied system and triangulating them with interview
findings with developers and the lead architect of the product. RQ3 is answered by extracting and
synthesizing the literature review results and combining them with case study findings.

3.1 Systematic Literature Review Methodology and Execution
We conducted a systematic literature review using the snowballingmethod described byWohlin [90].
We used a hybrid search strategy by combining the database search with iterative citations and
references analysis [60]. Forward snowballing (citation analysis) greatly improves the precision,
while backward snowballing (references analysis) greatly improves the recall of literature reviews.

3.1.1 Start Set Identification. We performed a database search in Google Scholar in December
2018, using the terms “software craft” OR “software craftsmanship” OR “software craftsman” OR
“software craftsmen” OR “software craftsperson.” We got 980 results that were analyzed by two
authors, based on the following criteria:
(1) Is the paper published in an English-language journal, conference, or workshop proceedings,

indexed by Google Scholar?
This step excludes books, book reviews, and thesis works, including M.Sc. and Ph.D. theses.

(2) Does the paper describe themes, practices, or otherwise conceptualize software craftsman-
ship?
This step excludes articles only referring to other works, such as [54], without providing any
additional detail.

Criterion 1 excluded 522 papers and criterion 2 excluded 346, resulting in 112 papers, which
were screened as potential seeds. Based on analysis of the title and abstract, we selected papers

, Vol. 1, No. 1, Article . Publication date: June 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Sundelin and Gonzalez-Huerta, et al.

discussing various aspects of software craftsmanship, which resulted in four initial seed papers,
denoted P1, P2, P3, and P4. According to Wohlin [90], the start-set should include papers from
different publishers, authors, communities and should not be too small. Since diversity and scale
are important for snowballing, we decided to broaden our set with relevant papers identified from
our experience and recommendations, not only the database search. After some initial deliberation
and analysis, we decided to add another five seed papers, denoted P5, P6, P7, P8, and P9. We also
decided to drop our initial requirement to include only peer-reviewed papers since some of the
included papers are magazines. At least two researchers applied the inclusion and exclusion criteria.
When two reviewers had an initial disagreement, the conflicts were resolved by consensus.

3.1.2 Snowballing iterations. We performed four snowballing iterations summarized in Table 1
and stopped when we found no new relevant papers, applying the inclusion and exclusion criteria
following the process described in Section 3.1.1. The full results of the SLR are available here5.
Since the Software Craftsmanship concept comes both from the Craftsmanship Manifesto and

seminal books, we extended the literature review with the final forward snowballing iteration
focusing on books. In other words, we followed the references of the found papers and created
a pool of books ready for analysis by partially following the guidelines for Multivocal Literature
Reviews presented in [32]. This resulted in 146 books. As in the protocol we followed for “white”
literature, two researchers applied the inclusion and exclusion criteria, and the conflicts were
resolved by consensus. We divided the books between three of the researchers by letting each
researcher analyse two-thirds of the books, making sure each book was reviewed twice. After
applying the second exclusion criterion (2), we discarded a total of 135 books. The pairwise Cohen’s
Kappa results are 1.0, 0.59, and 0.48, which is less than the recommended criteria of 0.7. All three
researchers discussed the seven books where disagreements were identified, and four of these were
included in the final result after consensus had been reached. We decided not to iterate on other
works citing included books since the number of citations for the included books is extremely high,
and the main references from the paper-set had already been included. Section 4 contains the full
results of the Systematic Literature Review.

Iteration Number of citations and refer-
ences screened

Included papers and books

Seed-1 P1 [81], P2 [62], P3 [71], P4 [50]
Seed-2 P5 [51], P6 [40], P7 [20], P8 [68], P9 [53]
Iteration 1 213 references and 186 citations P10 [64]
Iteration 2 30 references and 1 citation P11 [49], P12 [82], P13 [63], P14 [9]
Iteration 3 217 references and 517 citations P15 [76], P16 [7], P17 [48]
Iteration 4 18 references and 78 citations P18 [89]
Ref. Books 146 referenced books B1 [13], B2 [57], B3 [47], B4 [54]

B5 [78], B6 [37], B7 [77], B8 [55]
B9 [52], B10 [35], B11 [88]

Table 1. Snowballing iteration statistics and results

3.2 Case Study Methodology
The goal of the case study is to analyze different craftsmanship practices followed in developing a
product over seven years.
5https://tinyurl.com/Sundelin-SWC-SLR

, Vol. 1, No. 1, Article . Publication date: June 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Towards an Anatomy of Software Craftsmanship 5

3.2.1 The Case. The product studied in the case study is a FinTech global product that enables
access to financial services via mobile phones and the Internet. The system is a high-availability,
transaction-intensive product, with incoming and outgoing interfaces, a database, and scheduled
tasks such as sending notifications. As it operates in the financial sector, security plays a central
role in development.
Our investigation focuses on the financial core, containing the core business logic, such as

financial transaction management, and associated user interfaces. A deployed product also contains
other components (both third-party hardware and software) and customer adaptations, which are
out of our analysis scope. All other components use the services of the core to perform financial tasks.
The system is built in Java, using EJB 36 patterns, and uses a custom framework for deployment.

2009 2010 2011 2012 2013 2014 2015 2016 years

St
ar
t-
up

ph
as
e

(n
o
qu
an
t.
da
ta
)

In
te
rn
al
liv
e

cu
st
om

er

St
ra
te
gy

ch
an
ge

Live operation

More deployments

Fig. 1. Timeline of major events in the studied system.

Figure 1 depicts the timeline of the studied period, together with major events in the life cycle
of the product. The first line of code was written in September 2009, and the first live demo for
external parties was held in late October 2009. During 2011, Ericsson’s strategy was to provide
the solution as a service for end-users, and the system was deployed and taken into live operation
in this manner. Following a business strategy change, the company decided to decommission the
service and adopt a product-line approach. In late 2013 the first installation of the product went into
operation at a customer site. Subsequently, the roll-outs continued, and the product was serving
several tens of millions of end-users in more than 15 deployments worldwide during 2016.
As of December 2010, there are quantitative data available in the Git Version Control System.

Before that, the project used ClearCase, a licensed product whose storage is unavailable for analysis.
The initial phase of the product (between 2009 and 2011) can be characterized as “the startup

phase,” with frequent changes of direction and no market deployment. Between 2011 and 2013, the
internal customer provided feedback on the operation and deployment of the system. When the
first external customer contract was signed in 2013, and the first system was taken live later that
year, the direction became more stable, with increasing inflow of customer requirements.
The product used one primary and one supporting development site for most of the studied

period. From mid-2011 until mid-2012, one development team was based in China. Following a
change in product strategy, in mid-2013, two development teams from India were on-boarded
instead, and this continued until the end of the studied period.
During the whole studied period, ending in December 2016, the product has been developed

in an agile manner, first using two-week and later three-week sprints, heavily inspired by the
craftsmanship principles and practices, as discussed in Section 5.
During the studied period, 155 individual developers have contributed to the studied system

(measured via the Git Author tag). The first author of this paper was a developer from the project
6http://download.oracle.com/otndocs/jcp/ejb-3.1-pfd-oth-JSpec

, Vol. 1, No. 1, Article . Publication date: June 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Sundelin and Gonzalez-Huerta, et al.

start until October 2016. Table 2 contains the distribution of developers per quarter and quarters
per developer. On average, 48.9 developers contributed to the code base each quarter. The peak of
activity was reached in Q2 2016 with 91 contributors. In total, 24 quarters were studied, and in 75%
of these, more than 36 authors contributed code. This clearly shows that the product is larger than
what a single agile team can accommodate, requiring inter-team collaboration and communication.

Table 2. Descriptive statistics related to the number of developers in the system

Metric 𝑥 𝜎 𝑄25% 𝑄50% 𝑄75% Min Max
Developers per quarter 48.9 17.7 36 48 53 25 (Q1 2011) 91 (Q2 2016)
Quarters per developer 7.6 6.5 3 5 11 1 (14 dev) 24 (5 dev)

On average, each developer stayed almost two years (7.6 quarters) in the product, though 50%
of the total 155 authors contributed five quarters or less, and 25% contributed three quarters or
less. This turnover data for the studied period show similar characteristics as the cases reported in
previous research in the area [16]. The distribution is slightly right-skewed, as indicated by the
minimum and maximum values, with five authors contributing during all 24 studied quarters and
14 authors contributing during a single quarter.

Although most contributors have been software developers, more persons and roles such as
requirement engineers, system testers, product-, project- and line managers have contributed to
the product. These roles are not studied in this paper.

3.2.2 Data Collection. We used two data collection methods. We gathered qualitative data through
interviews with different roles involved in developing the product at different points. We also
gathered data using archival analysis, using different artifacts (e.g., Version Control Systems,
documentation, requirements, and defect reports) to measure the potential effects of craftsmanship
practices on the product and the development process. We interviewed six participants for this
case study, two female and four male subjects. Two of the interviewees worked in India, and four
worked at the primary development site. Table 3 details the participants’ background, as well as
the legend used in citations and tables.
The interviews were organized as semi-structured interviews, using the interview instrument

to structure the discussion. The interview protocol, which is publicly available here7, was built
and reviewed by the researchers and adapted as the interviews progressed to focus more on each
interviewee’s areas of expertise. At least two researchers conducted all the interviews, intervened
in the discussion at will, clarifying statements, and introducing new topics and areas. All the
interviews were audio-recorded and transcribed before analysis.

Table 3. Case study interviewee background, ordered by industry experience

Legend Description Experience
SwArch1 Lead Architect 20+ years in industry, 8 years in the product, starting 2009
Test2 Test-focused developer and Scrum master ≈20 years in industry, 8 years in the product, starting 2009
Test1 Test-focused developer and Scrum master ≈15 years in industry, 2 years in the product, starting 2015
Dev2 Developer ≈15 years in industry, 4 years in the product, starting 2013
Dev1 Developer ≈10 years in industry, 4 years in the product, starting 2013
Dev3 Developer and Scrum master ≈10 years in industry, 5 years in the product, starting 2012

7https://tinyurl.com/Sundelin-SWC-Interview

, Vol. 1, No. 1, Article . Publication date: June 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Towards an Anatomy of Software Craftsmanship 7

3.3 Consolidated Data Analysis: Building the Anatomy
In this subsection, we describe how we analyzed both the SLR and case study results.
The interview transcripts and the SLR results were analyzed using Thematic Analysis (TA),

following the guidelines by Braun & Clarke [10]. We opted for TA since we were not exploring a
completely alien phenomenon (i.e., Software Craftsmanship). Therefore there is no need to build an
entirely new theory that emerges directly from the data, as is one of the main strengths of Grounded
Theory [34], that in general is better suited to answer broader questions, such as “what is going on
there?” [80]. TA is a robust and systematic framework for coding and analyzing qualitative data,
identifying patterns across datasets in relation to research questions [11]. TA is also best suited
when most of the collected data belong to a precise context, which then will move to generalizations
and finally will allow building theories [3]. We carried out a theoretical or deductive approach for
Thematic Analysis[10] by starting with a theory (a set of codes and themes), updating this as new
data emerged.

Figure 2 summarizes the process for building the Anatomy of Software Craftsmanship. We first
generated the initial set of codes (i.e., craftsmanship principles and practices), represented in the
form of a mind-map (i.e., the Anatomy). This first set of codes was built based on the Software
Craftsmanship Manifesto and themes from books, as indicated in Table 5. The first author then
discussed the initial anatomy with the other authors in devil’s-advocacy-type sessions.

Then the papers and the books included from the SLR were analyzed and coded, searching and
reviewing the emerging codes and themes. When coding the books included as grey literature, two
researchers read each book. Once the coding was finished, the two researchers met to discuss the
codes found and went through the coding conflicts, which were solved by consensus.
The next step was coding the interview transcripts. The first author performed the initial In-

Vivo coding [75] of all six interviews. Next, the second and third authors independently coded
three transcripts each, assuring that at least two independent researchers coded each interview,
prioritizing the interviews in which each researcher was present. Once coding was finished, the
researchers met to discuss the potential coding conflicts, which were resolved by consensus. The
coding was done using the corresponding version of the Anatomy with the codes. During the
coding process, codes were merged, renamed, and new codes and themes were identified and added
to the Anatomy, as suggested in Figure 2. This process triggered the need to review the already
coded materials to identify potential instances of the new codes and themes in the data.

Taking the “Requirements” concept as an example to illustrate the process:

(1) The first author of this paper had experience from the case study, as well as noting the
importance of localized customers, as stated in several of the reviewed books, see Table 5.
Based on this, he initially decided on the code On-site customer, as it is a concept from Extreme
Programming [5] (XP) that aligns well with the requirements process of the case study. After
discussions with the additional authors, this code was used to explore the SLR results and to
guide the interviews. However, neither the coding system nor the tentative map was shown
to the interviewees before the interview.

(2) Both books B2 [57] and B8 [55] mention the importance of communication between develop-
ment teams and requirement owners, indicating that the requirements concept should be
somewhere near the Feedback theme.

(3) Furthermore, while conducting interviews, evidence was made more apparent that require-
ments were written in cooperation between the developers and the On-site-customer (though
the case study used the Scrum term “Product Owner” (PO)). This was mentioned by several
interviewees, for example, “We had our requirements in [the wiki-based requirement tool].
And the PO owned them — or the team — sometimes the team helped formulate them. But

, Vol. 1, No. 1, Article . Publication date: June 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Sundelin and Gonzalez-Huerta, et al.

1st Version of the Anatomy Final version of the Anatomy

Systematic literature review
including grey literature

Interview transcriptsKnowledge from books

Timeline

Thematic
Analysis

Fig. 2. Process for Building the Anatomy of Software Craftsmanship.

you walked through them [with the PO]. In [a different product], where I am now, it is
completely different. . . ”(Test2)

(4) Two other interviewees (Dev1, Test1) also indicated that the requirements were collaborative,
mentioning the importance of looking “top-down” while simultaneously keeping a “bottom-
up” perspective. This was also found in seven books and two papers in the literature, see
Table 11 for details. In B2 [57], McBreen cites a study by Curtis, Krasner, and Iscoe, where
this was stated as “Characteristically, customers also underwent a learning process as the
project team explained the implications of their requirements. This learning process was a
major source of requirements fluctuation.” [23]

(5) The importance of Accessible requirements was also made clearer during the interviews.
Having a clear, accessible requirement base was important for being able to work in parallel:
“A strength in [the case study project] was that we could start testing in parallel with devel-
opment. And we had clear requirements in one place [the wiki-based requirement tracking
tool]. Based on this, the developers did their analysis, and testers did theirs in parallel. So
we could write our acceptance test cases while development was ongoing.”(Test2). Another
interviewee supported this claim, and eventually, the Accessible requirement code was also
found in book B2 [57] and papers P3 [71] and P9 [53].

(6) Based on these data points, we decided to add the F1.1.2 Collaborative and F1.1.1 Accessible
practices to the F1.1 Requirements practice, connected to the original On-site-customer prin-
ciple. The decision to keep the whole sub-tree in the F Feedback theme was confirmed while
analyzing additional data, such as when an interviewee discusses interactions between the
requirements owner and the development team: “I would say we talk to [the requirements
owner] every day, almost. . .Or, maybe at least for half an hour every other day. . . It’s quite
often we encounter things, in code and so on, that is not really how the requirement was
imagined. . .Then you have to discuss that.”(Test1). In total, four interviewees, three books,
and three papers confirmed the importance of F2 Short feedback loops between requirements
engineers (regardless of title or term used), the development team, and the verification
engineers.

, Vol. 1, No. 1, Article . Publication date: June 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Towards an Anatomy of Software Craftsmanship 9

(7) While this paper was in revision, a reviewer rightly pointed out that our so-called “On-site
customers” were not really customers, but mere proxies for real, paying customers. Therefore,
we decided to rename the principle to F1 On-site customer (proxies), indicating that sometimes
you have to work with proxies for real customers (or end-users).

To increase validity and get feedback on our work, we shared the interview transcripts with the
interviewees to ensure that we properly captured their opinions. We also presented an intermediate
version of the craftsmanship map for company employees, including those currently working with
the product. This provided valuable, though unstructured, feedback, which validated our structure.

We used statistical methods such as descriptive statistics and graphical representations to analyze
and describe the case study’s quantitative data.

4 SYSTEMATIC LITERATURE REVIEW RESULTS (RQ1)
In this section, we summarize the main findings of the Systematic Literature Review. The results
of the consolidated thematic analysis will be outlined in Section 5. Table 4 outlines the results
of the analysis of papers P1 to P18. Only 6 out of 18 papers can be considered empirical studies.
Opinion papers and personal experience papers dominate the non-empirical studies and receive
rigor scores between 0 and 1 and relevance scores between 1 and 2, making these papers partly
relevant for our work. We used rigor and relevance criteria proposed by Ivarsson and Gorschek
[39]. Rigor can have scores from 0 to 3 and is related to describing the context (maximum 1 point),
study design (maximum 1 point), and validity (maximum 1 point). Relevance can have scores from
0 to 4, considering industrial participants (max 1 point), industrial context (maximum 1 point),
realistic size of the study (maximum 1 point), and the usage of research methods that facilitates
investigating real situations (maximum 1 point).
Among the non-empirical papers, two papers view craftsmanship from the perspective of the

history of software engineering. Among them, P18 gives a brief history of Software Engineering,
referring to Dijkstra declaring programming to be a discipline rather than a craft. Paper P14 also
looks into the history of Software Engineering and uses the term “software crafting” to describe
the (lack of stringent) processes for programmers during the 1960s.
On the philosophical stance, papers P11 and P17 discuss the theoretical underpinnings of the

epistemology of craft in modern programming. Paper P1 provides a similar discussion, advocating
that software methods should find ways of incorporating vernacularism and objects to a strictly
rational software design process.

Six non-empirical papers present opinions, visions, or experiences. Among these, paper P6 argues
that engineering is a craft supported by theory, while paper P16 argues that professional practice is
craftwork. Paper P8 discusses the general craftsmanship model and the software craftsmanship
model. Paper P7 highlights the importance of craftsmanship. Paper P9 focuses on the relation
between agile and craftsmanship, and paper P12 brings opinions about using katas. Paper P15
summarizes experiences holding a course involving craftsmanship principles.
None of the six empirical papers takes a holistic view of software craftsmanship. Instead, they

focus on practices (e.g., a community of practice for papers P3 and P10; craftsmanship forums and
chats for paper P2; using katas to learn and improve for paper P13).
Empirical papers P4 and P5 are the closest to this work. Paper P4 empirically derives different

conceptualizations of craft in building software, using a sample of 12 participants, whose sub-
jective opinions were collected via interviews and a focus group. Paper P5 attempts to outline
the craftsmanship practices based on the experiences from a project run with Scrum. The paper
discusses steadily adding value vs. responding to change, a community of professionals, customer
collaboration, and productive collaboration. Despite being highly relevant, paper P5 appears to

, Vol. 1, No. 1, Article . Publication date: June 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Sundelin and Gonzalez-Huerta, et al.

Table 4. Results from the systematic literature review

Paper
[ref]

Found
in

Refs Cited Rigor Rele-
vance

Venue Year Empirical Main contribution

P1 [81] Seed1 P10 0 0 Journal 2003 No: vision paper Craft metaphor for soft-
ware creation

P2 [62] Seed1 4 3 Journal 2013 Yes: qualitative
and quantitative,
longitudinal
study

Craftsmanship forums
and chats as a part of
community of practice

P3 [71] Seed1 3 3 Conf. 2013 Yes: question-
naire and focus
groups

Community of practice
as a part of software
craftsmanship

P4 [50] Seed1 2 3 Conf. 2014 Yes: qualitative in-
terviews and fo-
cus groups

Different conceptualiza-
tions of craft in building
software

P5 [51] Seed2 1 4 Work-
shop

2016 Yes: experience
report

Analyzes software
craftsmanship values in
a Scrum project

P6 [40] Seed2 0 2 Magazine 2014 No: opinion paper
and anecdotal ev-
idence

Engineering is craft sup-
ported by a theory

P7 [20] Seed2 0 2 Non-
academic
confer-
ence

1994 No: experience re-
port mostly based
on anecdotal evi-
dence

Stresses the importance
of craftsmanship

P8 [68] Seed2 0 2 Non-
academic
journal

2003 No: opinion paper Discusses general crafts-
manship and software
craftsmanship models

P9 [53] Seed2 1 2 Work-
shop

2008 No: personal ex-
perience

Focus more on agile than
craftsmanship

P10 [64] Iter1 P11,
P12,
P13,
P14

P1 2 3 Journal 2015 Yes: qualitative
and quantitative
surveys

Community of practice
and software design

P11 [49] Iter2 P10,
P16

1 2 Journal 2013 No: theoretical Epistemology of craft in
modern programming

P12 [82] Iter2 P10 0 1 Non-
academic
journal

2010 No: opinion paper Katas as a part of crafts-
manship

P13 [63] Iter2 P15 P10 2 2 Magazine 2014 Yes: experiment
using katas

Katas as a way of learn-
ing and personal im-
provement

P14 [9] Iter2 P10,
P16,
P17

0 1 Conf. 2006 No: opinion paper The birth of the crafting
paradigm preceding SE
in the 1960s

P15 [76] Iter3 P13 1 2 Conf. 2012 No: personal ex-
perience of the
course instructor

Courses that involve
craftsmanship practices

P16 [7] Iter3 P11,
P14,
P17

P18 0 1 Conf. 2016 No: observations
of the authors

Professional practice is
craftswork

P17 [48] Iter3 P14 P16 1 1 Work-
shop

2012 No: previous ver-
sion of P11

Previous version of P11

P18 [89] Iter4 P16 0 1 Journal 2008 No: personal
opinion paper

Mentions craftsmanship
in the history of SE

, Vol. 1, No. 1, Article . Publication date: June 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Towards an Anatomy of Software Craftsmanship 11

be an experience report from a project manager’s point of view. The paper provides quantitative
analysis of technical debt (number of lines removed over time) and velocity in backlog hours versus
Sonar Cute estimated technical debt. However, the paper lacks systematic connection between the
presented experiences and evidence. It appears that it is one person’s experience that summarizes
what the team has done rather than interviews with team members triangulated with quantitative
data analysis.

Table 5. Books resulting from the systematic literature review, with those used when building the initial
anatomy map marked in boldface.

Book [ref] Cited Year Main contribution
B1 [13] P14 1975, Originally published in 1975, the referenced version was published for the

P16 revised twentieth anniversary and also includes subsequent essays on software
1995 engineering. Details experiences from the development of the

IBM System/360 in the 1960s, where the author was the project lead.
B2 [57] P1 2002 Argues that craftsmanship is a better metaphor for software development

P8 than software engineering, which is described as focusing on
multi-year, large-scale, low-skilled-developer projects.

B3 [47] P3 2008 While focusing on patterns for using Scrum and Lean practices
in large-scale system development, the authors also illustrate
the importance of skilled developers that practice their craft,
mentoring less-skilled peers.

B4 [54] P6 2008 Personal experiences from the authors are combined with a set
P11 of concrete rules, exemplified in Java, to create a catalog
P17 of smells and heuristics, including remedies.

B5 [78] P4 2008 Philosophical book, arguing that Linux and other open-source
projects embody the spirit of craftsmen, as epitomized by
the hymn of Hephaestus.

B6 [37] P13 2009 Originally sourced from a wiki, this book describes Software
P15 Craftsmanship as a pattern language, centered around learning

themes such as "emptying the cup", "walking the long road",
"accurate self-assessment", "perpetual learning" and
"construct your curriculum".

B7 [77] P11 2009 Contains 15 interviews the author conducted in 2008 with leading
developers from the 1960s until today. Of the 11 interviewees
asked, eight would identify software development as a “craft”
Other opinions voiced were: “art”, “mathematics”, “science”,
“engineering” or “a style of writing”.

B8 [55] P6 2011 Using the author’s experience as an example, describes rules
and principles for professionalism in committing to a task,
developing, testing, and dealing with teams and people under
delivery pressure. Advocates for practicing and mentoring as
tools to reach higher productivity.

B9 [52] P6 2014 Wide treatment of Software Craftsmanship, ranging from personal
experiences, professional attitude and technical practices to how
to interview for recruitment and foster a culture of learning.

B10 [35] P10 2014 Describes best practices and lessons learned while teaching the
four rules of simple design8 via code kata exercises for various
groups of people over the course of five years.

B11 [88] P6 2015 Blends the two fields of Agile software development and Human
Performance Technology, a field closely related to human resources
and learning professionals, described in 1978 by Gilbert[33]

, Vol. 1, No. 1, Article . Publication date: June 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Sundelin and Gonzalez-Huerta, et al.

Table 5 contains the books found in the SLR, with the books used by the first author to build
the initial anatomy map marked in boldface. Many books (e.g., B1, B4, B8, and B9) describe per-
sonal experiences from skilled software development professionals. Others, such as books B3 and
B11, detail process patterns for large-scale organizations, whereas book B7 contains transcribed
semi-structured interviews with 15 senior developers, focusing on their personal development ex-
periences and opinions. Books B2 and B5 are more philosophically inclined, and book B10 describes
experiences from teaching XP and pair programming using deliberate practice.

To the best of our knowledge, this paper is the first attempt to empirically derive the anatomy of
software craftsmanship based on a more encompassing view of the seminal books, supplemented
by academic literature in the area, and buttressed by insights from an in-situ longitudinal industry
case study.

5 THE ANATOMY OF SOFTWARE CRAFTSMANSHIP (RQ2 AND RQ3)
Our anatomy of software craftsmanship is synthesized from the case study and the SLR results.
Figure 3 depicts four themes with associated principles and practices as interconnected nodes.
The A Value-focused architecture theme has three principles (A1 to A3) with ten associated

practices (A1.1 to A3.4). The D Iterative design, development, and verification theme has three
principles (D1 toD3) with ten associated practices (D1.1 toD3.2). The C Shared professional culture
theme has six principles (C1 to C6) with 18 associated practices (C1.1 to C6.3). The F Feedback
theme has five principles (F1 to F5), with nine associated practices (F1.1 to F5.2).
Some practices are connected to more than one principle, indicated in the figure via intercon-

nected edges. Some practices are hierarchical. For instance, the practice F1.1 Requirements contains
the sub-practices F1.1.1 Accessible and F1.1.2 Collaborative, indicating that the requirements gath-
ering and clarification process was performed in collaboration between the requirements engineer
(“On-site customer”) and the development team.

The principles are presented together with the supporting empirical findings found in the
literature and the case study.

5.1 A Value-focused architecture
The software craftsmanship manifesto states as a principle: “Not only responding to change, but
also steadily adding value,” and a well-crafted system should have a software architecture that
enables this goal.

The three principles and ten practices related to value-focused architecture are listed with refer-
ences in Table 6. To enable the value-focused architecture, software architects have to participate
in guiding the team into a modular and layered architecture, where changes do not ripple across
subsystems, and code is kept clean and as simple as possible through refactoring. The first rule of
refactoring[29] is that there must be sufficient test coverage before it occurs, so the architecture
should also enable the development of a comprehensive, layered test base.

A1 Participating Software Architects
• Literature:
Brooks, in B1 mentions the chief programmer as a role which today could be called lead
software architect, and discusses the benefits of conceptual integrity, by using a “small
architecture team.” Books B2, B6, and B8 also discuss the importance of architects that
participate in the end-to-end solution, for instance, by specifying and giving examples
of integration tests. Looking outside the SLR scope, Hunt and Thomas [38] calls the role
“technical head,” tending to the big picture, and Martin [56] states that software architects
need to participate in the development to spot problems and guide directions.

, Vol. 1, No. 1, Article . Publication date: June 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Towards an Anatomy of Software Craftsmanship 13

F Feedback

F1 On-site
customer
(proxies)

F1.1 Re-
quirements

F1.1.1
Acces-
sible

F1.1.2
Collab-
orativeF1.2

Frequent
demos

F2 Short
feedback

loops

F3 Review

F3.1 Team
review

F3.2
Static
review
tools

F3.3
Solution
review

F4 Learning
from feedback

F5 Con-
tinuous

integration
and tests

F5.1
Frequent
release

candidates

F5.2 Re-
producible

releases

A Value-focused
architecture

A1 Par-
ticipating
Software

Architects

A1.1
Passionate

A1.2
Skilled

core
A1.3 Em-
powerment

A1.4
Architect

also
implements

A1.4.1
Working
example

A2 Encap-
sulation

Separation
of concerns

A2.1
Isolated &
layered ar-
chitecture

A3 Clean,
minimal-
istic code

A3.1 Min-
imalistic

frameworks

A3.2
Judicious

use of 3pps

A3.3
Common

application
patterns

A3.4
Refac-
toring

D Iterative de-
sign, development
and verification

D1 In-
cremental

development

D1.1
Growing

value-
added
func-

tionality

D1.2
Team tests
what team
develops

D2 Testing
pyramid,
layered
testing

D2.1
Stable, in-
dependent

tests

D2.2
Compre-
hensive

functional
tests

D2.3 Test-
focused
devel-

opment

D2.3.1
Pairing

D2.3.2
Test-
Driven
Dev.

D2.4
Expressive

tests,
simple

structure

D3 Design
documen-

tation

D3.1
Executable

(tests
as doc)

D3.2 Col-
laborative

(wiki)

C Shared profes-
sional culture

C1 Standard
development
environment

C1.1
Common
code style

C2 Common
professional

culture

C2.1
Caring

C2.2
Clear roles,

respon-
sibilities

C2.3
Definition
of Done

C2.4 Pride

C2.5
Collective
ownership

C3 Cross-
team com-
munication

C3.1
Cross-team

forums

C4 Visibility
Transparency

C4.1
Visible
backlog

C4.1.1
Technical

debt
visible,
acted on

C4.1.2
Pull-
based

backlog

C4.2
Visible
status

C4.2.1
Infor-
mation

radiators

C4.3
Visible
release
plan

C5 Ac-
countability

C5.1
Humility

C5.2
Reputation

C6 Culture
of learning

C6.1
Reflecting

C6.2 Kata
exercises

C6.3
Mentoring

Fig. 3. The anatomy of Software Craftsmanship.

Books B1, B3 and paper P3 refer to team empowerment in the context of cross-functional
teams [58], while book B9 states that an empowered a team of craftsmen can be the
difference between project success or failure. Book B2 states that users should be empowered
to interact with developers, who know how to use this to deliver robust applications.
Paper P7 mentions the constant attention to architectural issues and lead developers that par-
ticipate in the product from early prototypes to delivery. Paper P5 states that their product
used an initial domain model and an early definition of basic architectural mechanisms.

, Vol. 1, No. 1, Article . Publication date: June 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Sundelin and Gonzalez-Huerta, et al.

Table 6. References to A Value-focused architecture

Id Name Books Literature Qualitative
A1 Participating Software Architects B1, B2, B6 SwArch1, Dev1, Dev2, Dev3, Test1
A1.1 Passionate B2, B3, B6, B7, B8, P1, P8 SwArch1, Dev3, Test2

B9
A1.2 Skilled core B1, B2, B3, B6, B7 P1, P8, P11, P15, SwArch1, Dev1, Dev2, Dev3, Test2

P17
A1.3 Empowerment B1, B2, B3, B9 P3 Dev3, Test1, Test2
A1.4 An architect also implements B3, B9 P7 SwArch1, Dev3, Test1, Test2
A1.4.1 Working Example P5, P7 Dev2, Dev3, Test2
A2 Encapsulation & separation of concerns B1, B2, B4, B7, B8 P11, P13 SwArch1

B10
A2.1 Isolated and layered architecture B2, B4, B6, B7, B10 P3, P11, P18 SwArch1, Test1
A3 Clean, minimalistic code B1, B2, B3, B4, P5, P11, P15, P17 SwArch1, Dev3, Test2

B7, B9, B10, B11
A3.1 Minimalistic frameworks B2, B4, B7 P4, P8, P11 SwArch1, Dev1, Dev2
A3.2 Judicious use of third-party-products B2 SwArch1
A3.3 Common application patterns B3, B7, B10 SwArch1, Dev1, Dev2, Dev3, Test2
A3.4 Refactoring B1, B3, B4, B6, B7, P3 SwArch1, Dev1, Dev2, Dev3, Test1,

B8, B9, B10, B11 Test2

The importance of skills and passion for the craft is discussed in seven books and eight
papers, as depicted in Table 6, e.g., paper P2 elaborates on the role of a passionate leader in
increasing engagement.

• Empirical findings:
The studied system had the same chief software architect, who implemented a lot of code,
including a minimal container framework, based on partial support of EJB 3 standards. “I
tried not to interfere too much with the teams. Instead, I tried to ensure that the platform
they were building on was stable and good enough, so whatever they did, they will most
likely get it right. Because that reduces the load on me and my team.”(SwArch1)
As the product grew beyond two teams, one senior developer from each teamwas designated
“team architect” (TA), with the intent to spread the knowledge from the chief software
architect. This is further discussed in item C3, and similar to the one reported in [12].
Teams were empowered to come up with their own solutions and to improve on exist-
ing solutions. The TA group also had some votes in the resource planning, for instance,
regarding “onboarding” procedures for the outsourced teams, as mentioned in item C2.
Several interviewees mention the passion and the pride they took in the product, e.g. “We
cared a lot for our product. Some people ended up in different areas. . . Some features were
like one’s nursing child.”(Test2)
Team architects were expected to both participate in the team’s daily work and mentor
them into a coherent way of working: “[Our team was formed by] mixed newly graduates
and senior developers. And our TA, I guess he preached a lot. He has gotten me into
Domain-Driven Design. During my education years, I was using strings everywhere. So,
he really opened my eyes to the benefits of DDD. And now, I try to spread the word [to my
new team].”(Dev3)
There are also contradictory views that the product was lacking a communicated architec-
tural vision: “My dream architect should know the code, know how we want it to work, and
also say ‘Now when you are into this part, I want you to think about this also, improving,
preparing for future. . . ’ And also being able to delegate this.”(Test1)

, Vol. 1, No. 1, Article . Publication date: June 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Towards an Anatomy of Software Craftsmanship 15

• Analysis:
Striking the correct balance between participating and empowering is not trivial. While
Bass et al. [4] do include “Implementing the product” and “Testing the product” as two of
the ten technical duties of a software architect, they also list seven non-technical duties,
nine non-technical skills, and ten knowledge areas that should be mastered.
In the studied case, the developers showed lots of passion for the product and worked
together towards the same goal. However, there were still expressions that there was a lack
of a communicated vision and a desire for tasks and responsibilities to be delegated more.

A2 Encapsulation, Separation of concerns
• Literature:
Encapsulation is the materialization of one of the most traditional Software Engineering:
“the separation of concerns” [25]. While developing a complex system, there is a need to
develop and evolve different parts of the system independently [4]. The layered architectural
pattern is the most widely spread practice for architectural subdivision [4, 14]. The pattern
segments the software systems in a way that enables modules to evolve and be developed
separately so that each module has only one main reason to change.
Five books in the SLR findings (B2, B4, B6, B7, B8, and B10) advocate proper encapsulation,
loose coupling, and isolation of changes. Book B2 explicitly mentions that designing for
testability is important because it discourages coupling and encourages cohesive module
design. Outside the SLR findings, Richards et al. state that layered architectures increase the
efficiency of testing [70]. Papers P3 and P11 state simplicity as a key trait of craftsmanship.

• Empirical findings:
One of the first architectural decisions was to rely on an EJB 3-alike application framework,
developed internally, to solve product requirements regarding installation, upgrades, and
configuration. The framework is further discussed in item A3.
The architecture enforced business logic to be split into interfaces and implementations
and used dependency injection, using naming patterns to reduce the need for boiler-plate
configuration. Inter-process communication initially used serialized Java objects, though
this was later replaced with an XML-based interface, supported by a schema definition
language. This change made it easier to enforce backward compatibility across different
protocol versions by defining a published protocol that was shared with external parties.
Figure 4 (a) depicts the initial layered architecture using UML stereotypes packages as layers
and stereotyped allowed-to-use UML dependencies, as suggested in [17]. The application
server is represented as a bottom layer in this figure, although it also supports all layers
with cross-cutting concerns, such as transactions, security, and logging. The Data Access
Objects (DAO) encapsulate the access logic to the database, and upper layers add business
logic and protocol support.
When faced with the problem of supporting clients using earlier protocol versions, the
suggested solution was to add another layer in the architecture, as depicted in Figure 4 (b).
The old “Operations” layer was split in two, where the new “Operations Manager” layer
contained code common to the different versions of each operation, and the protocol
version layer converted between the specific protocol versions and the operations layer.
The lead system architect had strong opinions about the architecture: “If you look at each
service, it has a normal, layered architecture, because everything else is wrong.”(SwArch1)
He also discussed the architecture’s tree-based structure: “The dependencies between the
different services should look like a tree because it’s easier.”(SwArch1)

, Vol. 1, No. 1, Article . Publication date: June 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Sundelin and Gonzalez-Huerta, et al.

Operations

<<layer>>

Services

<<layer>>

Managers

<<layer>>

DAO

<<layer>>

Protocol 1.0
<<layer>>

Protocol 1.1
<<layer>>

Protocol 1.2
<<layer>>

Operation Managers
<<layer>>

<<Allowed to use>> <<Allowed to use>> <<Allowed to use>>

<<Allowed to use>>

<<Allowed to use>>

Services

<<layer>>

Managers

<<layer>>

DAO

<<layer>>

DAO

<<layer>>

<<Allowed to use>>

EJB 3 Application Server

<<layer>>

DAO

<<layer>>

<<Allowed to use>>

EJB 3 Application Server

<<layer>>

<<Allowed to use>>

<<Allowed to use>>

Services

<<layer>>

Managers

<<layer>>

DAO

<<layer>>

<<Allowed to use>>

<<Allowed to use>>

Services

<<layer>>

Managers

<<layer>>

DAO

<<layer>>

<<Allowed to use>>

<<Allowed to use>>

(a) (b)

Fig. 4. Layered view of the Initial architecture (a) and Layered view of the Architecture after separating
protocols from business logic (b).

Particular care was taken to separate the architectural framework from the business logic:
“The bottom layer is, of course, just an interface. You don’t rely on implementation because
implementations can change. Then you build data access on top of that, then on top of that
you build managers and compound features, and so on.”(SwArch1)
Architecture should simplify the creation of business value. This includes “making it easy to
make the right decisions” such as container-managed transactions and no explicit threading
in business logic. It also should simplify wanted non-functional aspects, such as simple
unit and integration testing, a defined data model management policy, absolute transaction
security, and scaling. This was mentioned as beneficial by three developers: “There was a
good framework at the product level, so you avoid doing things which are wrong.”(Dev2)
“[Application developers] should not need to know everything that is behind the scenes. If
they need to see it, then something is wrong. Then we haven’t described a certain interface
good enough.”(SwArch1)
The desire to simplify testing was also a driving factor: “. . . [listeners are used as] reversed
dependency injection, to inject behavior that is needed for a particular customer. . . instead
of trying to mush everything into the same thing. Because that will take a longer time
to build, longer time to test. It will be a lot more complex to understand, and it won’t be
readable.”(SwArch1)
Layered architecture also supported business flexibility, allowing the system to be cus-
tomized for different installations while keeping a stable core. All deployments used the
same core engine with customer-specific adaptations added as optional packages.

• Analysis:
Following software craftsmanship principles means focusing on simplicity and testability
when making architectural decisions. Similarly, the developers were supported in their
evolution of the system through the hiding of unnecessary detail and having clear interfaces
to features, affecting both functional and quality attributes. The architecture supported the

, Vol. 1, No. 1, Article . Publication date: June 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Towards an Anatomy of Software Craftsmanship 17

smooth replacement of deployed code, data models, and existing data, showing that there
was a long-term commitment to the product.

A3 Clean, “minimalistic” code
• Literature:
As detailed in Table 6, eight of the studied books describe the importance of keeping
the code clean and the design simple. Books B2, B4, and B7 advocate for minimalistic
frameworks, and B2 also mentions that care should be taken when choosing to depend
on other products. Both paper P12, and books B3, B7, B10, [56] exemplify and describe
the importance of using common application patterns to communicate a design. However,
in book B7, one interviewee (Brendan Eich) concedes that he never bought the Design
Patterns book [31].
Nine books list refactoring as the key principle to achieve a clean codebase, indicating that
clean code typically arises from successive refinements; it is not written directly. This is
also stated by Hunt and Thomas [38]. Paper P3 also mentions refactoring as a principle of
software craftsmanship. According to Fowler et al.[29], refactoring involves “improving
structure without affecting existing functionality.”
Papers P5, P11, P15, and P17 mention clean code principles, using exploratory programming
and reflections to make the code cleaner.
Papers P4, P8, P11, P17, and P18 discuss how tools are important to a craftsman and how to
fight against homemade complexity, using clean abstractions. Of particular importance is
the ability to choose the tool based on the task at hand.
Paper P12 mentions the importance of understanding the styles, idioms, and patterns to be
effective in a language and how the Lisp and APL communities have championed the use
of kata-like exercises to spread common idioms for developers to be productive.

• Empirical findings:
Both items A1 and A2 mention the in-house developed architectural framework. In early
2011, the framework consisted of 299 Java files totaling 19 kLOC production code, which
grew linearly (LOC p-value < 2 ∗ 10−16, 𝑅2 = 0.968) to 72 kLOC Java production code in
1027 files in late 2016. This is clearly fewer lines of code than, for example, the JBoss (also
known as Wildfly9) application server, which in its 7.0 release (July 2011) comprised 2886
Java files, totaling 205 kLOC, and the 10.1 release (Aug 2016) comprised 7272 Java files,
totaling 433 kLOC.
The importance of the minimal framework was stated by the chief software architect: “. . . all
these application servers, they have to support 100% of the standard. The difference with
us is that we support the 5% that we need. . . System handling, such as installing, upgrading,
configuration, and so on is usually not covered in the normal application servers.”(SwArch1)
Another driving force of the framework was the ease of development: “[The foundation] is
built so that it is easy to develop and debug, also locally, on your local laptop. You have
the basic services, cross-functional things with interceptors, and so on. The application
developer should be able to focus on the value for the customer.”(SwArch1).
In the project, all interviewees mention refactoring as a used practice, though two say
that it has to be “hidden” in the normal work rather than being a planned activity. One
interviewee stated that refactorings larger than a week have to be planned, but smaller
ones take place “in the regular feature work.”

9https://github.com/wildfly/wildfly

, Vol. 1, No. 1, Article . Publication date: June 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Sundelin and Gonzalez-Huerta, et al.

Several interviewees also mentioned the desire to refactor more, to clean up more, but
states that the balance tends to tilt towards finishing the current feature.
The project required developers to use strict commit messages, including the reason for the
change. Possible reasons for a change included feature development, spontaneous or official
(documented) bug fixes, spontaneous refactorings, or build-related changes (e.g., preparing
for releases or version changes). Table 7 shows the percentages of commits of the different
sorts on the master branch, not including back-ported commits to maintenance branches.
The table shows that the refactoring percentage of commits varied between 27% and 7%
each quarter, with both mean and median around 16%. The number of fault correction
commits was lower, between 22.3% and 6.3%, with a mean of 12.6% and a median of 12.4%.

Table 7. Summary statistics of the proportion and type of main branch commits per quarter

Metric 𝑥 𝜎 𝑄25% 𝑄50% 𝑄75% Min Max
Commits per quarter 3362 1189 2699 2994 3767 1090 (Q4-2016) 6361 (Q4-2015)
Feature development 52.8% 10.6% 46.1% 54.3% 59.2% 28.8% (Q1-2011) 74.5% (Q4-2015)
Refactorings 16.8% 4.5% 14.7% 16.6% 18.2% 7.7% (Q2-2014) 27.6% (Q1-2011)
Fault corrections 12.6% 3.3% 10.9% 12.4% 13.9% 6.3% (Q4-2015) 22.3% (Q4-2012)
Build related 16.8% 6.5% 12.9% 13.6% 19.0% 8.8% (Q4-2015) 30.6% (Q4-2016)
Unclassified 0.2% 0.1% 0.2% 0.2% 0.3% 0.1% (Q1-2013) 0.5% (Q4-2013)

There were concerted efforts to clean up the code in the project and keep a consistent style
throughout the codebase. As mentioned by one of the respondents, the developers should
“. . . strive to leave the code a little cleaner than you found it.”(Dev3)
In the project, several interviewees mention the help they got from the well-defined
application patterns used in the product, including the security patterns (encryption, key
management, and fingerprinting). “Identify the patterns. Actually, you have thousands of
classes and code, but you can summarize them into one or two use cases. You need to have
examples. . . .”(Dev1)

• Analysis:
The results regarding refactoring, see Table 7, confirm that the organization was consistent
in refactoring and in keeping the constant improvement culture. Both refactorings and
spontaneous bugfix percentages were higher at the beginning of the project when the
codebase was smaller and more volatile. However, the inter-quartile range indicates that
during 12 of the studied 24 quarters, the ratio of spontaneous refactoring commits varied
between one in seven (≈ 14%) and two in eleven (≈ 18%).
Others have studied the effects and efficiency of refactoring operations embedded in feature
development (e.g. [44, 92]).

Summary:
The architecture of a system developed with craftsmanship in mind should strive to maximize

value-creation over a long-term commitment to the product. The way to achieve this is to develop
and frequently validate a comprehensive regression test base, enabling developers to refactor the
codebase into a clean and simple representation. It is as important to care for the test base as for the
production code.

5.2 D Iterative design, development, and verification
The first principle in the software craftsmanship manifesto states, “Not only working software
but also well-crafted software.” The practices outlined in Table 8 are centered on verification
and iterative refinement of the software and its requirements. There are also dependencies to an

, Vol. 1, No. 1, Article . Publication date: June 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Towards an Anatomy of Software Craftsmanship 19

architecture focused on testability and clean code; as stated succinctly by Martin[55] in book B8:
“The fundamental assumption underlying all software projects is that software is easy to change.
If you violate this assumption by creating inflexible structures, then you undercut the economic
model that the entire industry is built on.”

Table 8. References to D Iterative design, development, and verification

Id Name Books Literature Qualitative
D1 Incremental development B1, B2, B3, B4, B5 P1, P11, P12, P17 SwArch1, Dev1, Test2

B6, B7, B8, B9, B10
D1.1 Growing value-added functionality B1, B2, B3, B4, B5, P1, P3, P5, P7 SwArch1, Dev1, Dev2, Dev3, Test1, Test2

B7, B9, B10
D1.2 Team tests what team develops B3, B7, B8, B9, B11 P3, P17 Dev1, Dev2, Dev3, Test2
D2 Testing pyramid, layered testing B1, B2, B3, B4, B6, P1, P3, P5, P11, SwArch1, Dev2, Test1, Test2

B7, B8, B11 P17
D2.1 Stable, independent tests B8, B9, B10 SwArch1, Dev1, Test2
D2.2 Comprehensive functional tests B1, B2, B3, B4, B7, P3, P11, P17 SwArch1, Dev1, Dev2, Dev3, Test1, Test2

B8
D2.3 Test-focused development B2, B7, B9 SwArch1, Dev1, Dev2, Dev3, Test1, Test2
D2.3.1 Pairing B3, B6, B7, B8, B9, P5, P8, P10, P12, Dev3

B11 P13, P15
D2.3.2 Test-Driven Development B3, B4, B6, B7, B8, P1, P3, P11, P13, Dev1, Dev2

B9 B10, B11 P15
D2.4 Expressive tests, simple structure B2, B4, B7, B8, B9, SwArch1, Dev1, Dev3, Test2

B10
D3 Design documentation B1, B7
D3.1 Executable (tests as doc) B1, B2, B4, B7, B8 P4, P5, P9 Dev1, Test2
D3.2 Collaborative (wiki) P2, P3, P4, P8, Dev1, Dev2, Test1, Test2

P9, P15

D1 Incremental development
• Literature:
Ten of the studied books relate to an incremental development in some form, and the
majority of them refer to “growing” software rather than “building,” “designing,” or “archi-
tecting” software, see Table 8. This implies that software construction is an act of successive
refinement, where the software is constantly tended to and updated as the requirements or
environment changes.
Papers P1, P7, P11, and P17 discuss the iterative development and the moving between
designing, making, evaluating, and reflecting phases of software development.
Papers P1, P3, P5, P7, and P17 mention prototyping and how testing is done in parallel with
development.
Books B3, B7, B8, B9, and B11 state that teams should be cross-functional and autonomously
analyze, implement, and verify functional requirements. Book B8 states: “QA should find
nothing,” implying that QA is a separate team, focusing on verifying other requirements
than pure functions, for example, usability, stability, security, and other quality requirements
of the produced system. Paper P3 also mentions the introduction of cross-functional teams,
as one part of transforming a large organization into Lean Software Development.

• Empirical findings:
Testing of functions and requirements took place in the same team, and in the same sprint,
as where the development of the production code took place. Because developers using
the original functional test tool could not keep up with the development pace, a couple
of developers wrote a new Java-based test case runner, where functional test cases was
specified in a custom XML-based language. This allowed development of test cases to
proceed alongside development of production code.

, Vol. 1, No. 1, Article . Publication date: June 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Sundelin and Gonzalez-Huerta, et al.

Table 9 shows the linear evolution of the codebase over time for the major types of source
code in the product. All studied types grow linear over time, with all p-values less than
10−13 and adjusted 𝑅2 between 0.91 and 0.98. For the Java- and XML-based code, the column
Initial size reflects the state at the start of data collection in January 2011, while the
Scala-based code was first developed in Q3 2012. The column Growth per quarter is the
calculated linear regression coefficient, and End size is the size at the end of the studied
period, in December 2016.

Table 9. Summary code statistic for the five major code types, showing linear growth over the quarters

Code type Lang. Initial Growth per p-value Adjusted End
size quarter 𝑅2 size

[kLOC] [kLOC/qtr] [kLOC]
Production Java 150 26.1 1 × 10−13 0.91 753
Unit tests Java 64 24.7 3 × 10−14 0.92 620
Integration tests XML 83 67.2 3 × 10−14 0.92 1560
Web GUI prod. Scala 9 3.3 1 × 10−13 0.97 65
Web GUI tests Scala 2 8.4 4 × 10−15 0.98 129

By calculating Pearson’s correlation coefficient (𝑟𝑥𝑦) between different types of code, we
confirm that the volume of the different types of code varies together. Production code are
related to unit tests by a correlation coefficient of 𝑟𝑝𝑟𝑜𝑑,𝑢𝑛𝑖𝑡 = 0.998 (p-value < 2 × 10−16),
and to integration tests by 𝑟𝑝𝑟𝑜𝑑,𝑖𝑛𝑡 = 0.996 (p-value < 2 × 10−16). The web GUI production
code are related to the web GUI tests by 𝑟𝑤𝑒𝑏𝑝𝑟𝑜𝑑,𝑤𝑒𝑏𝑡𝑒𝑠𝑡 = 0.975 (p-value < 6 × 10−12).
All interviewees mention the highly iterative development process, and one developer
contrasts this with regular consultancy work: “In a consultancy, they focus more on the
delivery than on the craftsmanship. . .We used an iterative, test-driven way, to be prepared
for what can happen in the future.”(Dev1)
Several interviewees also mention tests being developed alongside the production code,
e.g., “We used to ensure that whatever test cases had been written in the [test plan, a shared
Excel document] will translate into some automated test cases.”(Dev2)
“A strengthwas that we could test in parallel with development, based on a clear requirement
base, in [the wiki-based requirement tracking system], where everyone could read it.”(Test2)

• Analysis:
Incremental development is part of getting reliable and actionable feedback and so is tightly
tied to F2 Short feedback loops. Because the teams owned “the whole development process,”
including functional testing, they took responsibility for the entire development phase,
including documenting used solutions.
The fact that all five types of code grow linearly, together, indicates that software was
developed incrementally throughout the studied period. In a non-incremental scenario, we
would have expected integration tests to lag behind the production code as the focus of the
organization moved to test phases that followed growth of production code and unit tests.
We see no such findings in our data.
The organization took action when it discovered that the originally used functional test
tool could not keep up with the development pace and created an alternative solution
based on structured text files. However, the amount of function test code soon eclipsed the
production code, and it continued to grow faster throughout the study.

, Vol. 1, No. 1, Article . Publication date: June 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Towards an Anatomy of Software Craftsmanship 21

D2 Testing pyramid, layered testing
• Literature:
Eight books and five papers stated that tests should be layered into different categories, see
Table 8. The importance of having a stable base of test cases, independent of each other, is
mentioned in three books, B8, B9, and B10.
Papers P3, P11, and P17 mention how solutions can be proposed by writing tests, for instance,
using Behavior-Driven Development, and the practice of high-level integration tests is also
stated in books B1, B2, B3, B4, B7, and B8.
Focusing on the development of tests, whether using Test-Driven Development (TDD) or a
less stringent method, is mentioned in nine books and six papers, with papers P3, P13, and
P15 explicitly mentioning TDD as a craftsman skill to practice.
The practice of having automated tests of different kinds with a readable, simple structure
is stated in five books, with the most pointed citation mentioned in book B8: “Unit tests
and acceptance tests are documents first, and tests second. Their primary purpose is to
formally document the design, structure, and behavior of the system.”
The “Agile Testing Quadrants” model [21] can be used to classify tests along the lines of
“supporting the team” and “criticizing the product,” versus “business-facing” (verifying
customer requirements) and “technology-facing” (verifying individual implementation
decisions). Outside the SLR findings, the books [38] and [56] also state that designing for
testability increases the likelihood of tests being developed.
Paper P5 explains how a successful test run triggers a new executable package and deployment
to a DevOps pipeline, followed by further non-functional testing and further validation.

• Empirical findings:
In the studied case, already from the start of the product, considerable focus was placed
on verification on several layers, as illustrated by the test pyramid [18]. While some
developers preferred Test-Driven Development, others instead preferred to write tests after
the production code, but tests were expected to be developed close to the production code,
minimizing feedback time (item F2). As stated by the lead architect: “I call it Test-Focused
Development, because one of the ground rules is that, if you build something, it should be
easy to test. Always easy to test. . . If it is easy to unit test and function test, then it is better
than building the small, slimmest solution. So, I always have this pyramid. . .You should
work with tests from Day 1. If you don’t do that, you’re doing it the wrong way”(SwArch1)
Another interviewee confirmed the test focus, by comparing with another product: “I think
it [relates to] how we introduced ways of working in [studied case] We focused much on
test coverage, and there was solid practice related to which test cases to write, how to
review and present them. There was much more focus on testing, on automation and those
areas.”(Dev2)
The amount of (functional) integration test code soon eclipsed the production code, while
the unit tests grew at the same pace as the production code. The same pattern repeated
itself when the new Scala-based web-GUI was developed in 2012, as its functional test
codebase, also written in Scala, grew faster than the GUI production code.
Figure 5a shows the numbers of non-commented source code lines for the production code
(prod (Java)), unit tests (unit (Java)), integration tests (int.test (XML)), web GUI (prod (Scala))
and web GUI integration tests (int.test (Scala)), and Figure 5b shows the relative size of the
unit tests and integration tests versus the Java production code, and the relative size of the
Scala-based integration tests versus the Scala-based GUI production code.
The figure shows that the integration tests were growing much more than the production
code, while the unit tests kept approximately the same growth rate. As reported in Table 9,

, Vol. 1, No. 1, Article . Publication date: June 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Sundelin and Gonzalez-Huerta, et al.

0

500000

1000000

1500000

2012 2014 2016

time

n
o

n
−

c
o

m
m

e
n

te
d

 c
o

d
e

 l
in

e
s

a)

0.5

1.0

1.5

2.0

2012 2014 2016

time

T
e

s
t

c
o

d
e

 s
iz

e
 r

e
la

ti
ve

 t
o

 p
ro

d
u

c
ti
o

n
 c

o
d

e
 s

iz
e

b)

category prod (Java) unit (Java) int.test (XML) prod (Scala) int.test (Scala)

Fig. 5. Ratio of test code versus production code over time.

all five codebases grew linearly throughout the studied period. The three dips in integration
test size between Q1 — Q2 2011, Q1 — Q2 2012, and Q4 2016 — Q1 2017 were due to
product realignments, where old protocols and functions were removed. Both integration
tests (written in XML) and GUI tests (written in Scala) grew to about twice the size of the
corresponding production code, although the GUI code was much smaller. The unit test
base was initially slightly less than half the size of the non-GUI production code but grew
to about four-fifths (≈ 80%) of the production codebase.
The unit tests can be further subdivided into “pure unit tests” (no interaction with the
outside world) and “fixture tests,” where the tests interact with a locally installed and
prepared database. Non-functional testing used dedicated hardware, including dedicated
simulators. The product placed a relatively large emphasis on unit tests that interacted
with a locally installed database, using the Transaction Rollback Teardown pattern[59]. At
the end of the studied period, 8327 integration tests, 18412 database-interacting unit tests,
and 5328 “pure” unit test methods had been developed. The number of pure unit test cases
were higher, as these also included parameter-driven tests generated from the code via
reflection, see item F3 about the “meta-tests.”
Each developer knew how to use and develop integration tests, though, in practice, one
or two persons per team focused on writing them. “Anyone should be able to do the
testing. . .One or two persons in the team, part of the team, developing [integration] test
cases. He used to get assistance from other developers, in case required.”(Dev2).

, Vol. 1, No. 1, Article . Publication date: June 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Towards an Anatomy of Software Craftsmanship 23

Another developer mentions, “. . . some testers might not have the correct background or
understanding, so I gave them a template, like: ‘This is how I think, now you explore more
into your scenarios. . . ’”(Dev1)
The lead architects decided to include “test helpers” in the functional verification phase,
which facilitated efficient integration testing. “And then add some test packages on the
side, which are used in the testing. So it’s not black-box, but more gray-box. You use those
packages to make your test flow a little better.”(SwArch1)
The Definition of Done for feature development (see item C2.3), stated that functional
verification should be automated before feature delivery. How to achieve this was regularly
discussed in cross-team forums (see itemC3). “Everything should be tested, and there should
be automatic test cases for everything. . . ”(Dev3) Despite this, some manual functional test
cases still existed. At the end of the studied period, there were 24 documented manual
functional test cases, mostly related to data aging (importing/exporting archived database
data) or security issues. These were executed based on a “risk-based judgement,” typically
when changes had been made in the tested area or before major releases of the product.
The system testing team also focused on manual testing, such as validating instructions for
administrators or integrators. This test phase was the first with a full hardware deployment,
including Hardware Security Modules, application firewalls, and load balancing hardware.
In contrast, functional testing in development teams utilized plain Linux virtual machines.
One developer mentions that the team structured their work so they would interact all the
time and used this as a form of pair programming: “We did not divide tasks [in functional
areas], such as GUI, persistence and so on. Instead, we pair-programmed a lot. We were
encountering each other’s code all the time, communicating verbally: ‘Hey, this method
you did — can I change it, make it better?’”(Dev3)

• Analysis:
Specifying requirements as test cases will lead to the volume of test code eventually
outgrowing the production code, as is visible in Table 9 and Figure 5. Therefore, it is
important that these test cases (requirements documents) are easily readable, frequently
maintained and executed to ensure that they still reflect the state of the product. Bjarnason
et al. [8] describe five different variants of using test cases as requirements, based on a
multi-case study made at three companies of various sizes. In particular, while the largest
company had failed to completely specify end-to-end behavior, including user interactions,
as test cases, they reported success in using the process for API development.
Having this layered testing architecture as a regression test base enables safe refactoring
and transformation into clean code (item A3). Thus, the test base enables clean production
code, and the tests are required to be clean in order to be readable and maintainable.
Overall, this enables an evolutionary growth of the software, without “big-bang” integration
phases. However, cleaning and refactoring the tests themselves are harder to achieve.
When changing test cases, care must be taken that the changed tests cover the original
requirements. How to achieve this remains an unanswered question.
There will always be some tests that are not possible or economically viable to automate.
In the studied product, the developers identified 24 test cases out of a functional regression
test base of 8327 test cases (0.29%) as belonging to this category.
The different layers of tests are important to enable the feedback loops necessary to guide
incremental design and development. Each layer has different trade-offs related to reflecting
the true production environment behaviour versus being fast and efficient to develop and
trouble-shoot. In the product, many unit tests interacted with a locally installed database,
which has the disadvantage of adding lead time to the feedback loop. However, there is

, Vol. 1, No. 1, Article . Publication date: June 2020.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Sundelin and Gonzalez-Huerta, et al.

also an advantage in that relatively large parts of the system can be tested down to the
SQL level without mocking behavior.

D3 Design documentation
• Literature:
Five books mention documentation in relation to craftsmanship, as self-documenting pro-
grams, in B1, tests as documentation, in B4 and B8, and B7 references to Knuth’s work
on literate programming [45]. Book B2 states that “a lesson from software engineering is
that hardware and software never quite match their documentation.” One solution to this
proposed in both B7 and [38] is to extract documentation from the source code.
Papers P2, P3, P4, and P15 mention collaborative documentation through Wikis or shared
recordings. Paper P9 states that a shared user story repository gives immediate feedback on
changes. Papers P4, P5, and P9 mention code as communication, exemplified by Domain-
Driven Design, and acceptance tests in the form of executable user stories.

• Empirical findings:
The studied product had no formal design documents (e.g., component descriptions) main-
tained by the development teams. Instead, they relied on a wiki system to document
design principles and executable test cases as documentation of required behavior. The
organization used deliberate practice (see C5) as a tool to teach development principles.
As part of defining the external API, a tool was developed based on the Javadoc10 tool,
converting code comments and annotations, including validation rules, into a form suitable
for customers or system integrators. This documentation evolved together with the API.
The integration test cases also frequently served as documentation of how the product be-
haved, putting pressure on their quality and descriptions. The test case structure, including
directory and file names, became part of the documentation, as it became harder to know
where to look as the test base grew. As discussed in item F5, the automated test cases were
continuously executed, and their results verified, meaning that the current tests reflected
the actual state of the product.
Several interviewees mentioned that they were using tests as documentation: “The test
was the documentation. . . even if we had followed [the requirement tracking tool].”(Test2)
One interviewee mentioned the lack of design documentation as a hindrance: “There are
different levels of documentation. There are many complaints [from developers] that, for
instance, data models are not documented, there is a lack of a leitmotif. On an overarching
level, to get the big picture, there is quite good product documentation, though..”(Test1)

• Analysis:
Executing design documentation towards a working system means that inconsistencies
quickly surfaces, enabling quick corrections. However, as the test base grows, the internal
and external structure becomes extremely important. Each test case needs to be self-
sufficient, describing its needed environment and its setup. Business-facing tests should be
specified in an appropriate high-level language, such as a Domain-Specific Language, to be
accessible to people not directly involved in development.
Collaboratively editedwiki pages documented the core design principles, with automatically
executed test cases documenting the detailed product features. Documents targeted for
customers or support personnel were kept at a high functional level. Detailed protocol
documentation was generated directly from the source code, so it would automatically
match the delivered product.

10https://docs.oracle.com/javase/8/docs/technotes/guides/javadoc/doclet/overview.html

, Vol. 1, No. 1, Article . Publication date: June 2020.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Towards an Anatomy of Software Craftsmanship 25

We see some evidence that there was a perceived lack of certain aspects of documentation,
though the overall product level seems acceptable. This could indicate that having a more
structured approach to design documentation than a wiki system could have long-term
benefits. At the same time, we see that developers were using the test base as documentation,
meaning that as long as the tests are readable and at an appropriately high level, the system’s
code and behavior would be understandable.

Summary:When focusing on incrementally growing software, it is essential to focus on, and
build, a comprehensive regression test base to validate that what was built still adheres to prior
requirements. The regression tests will serve both as a safety net and as the actual specification of the
behavior of the system under construction. As such, they should be readable by both programmers
and requirement owners. To meet this goal and to ensure quick feedback, tests shall be structured
in different layers. Higher-level tests shall use a language closer to the business domain than the
ordinary programming language to support its usage as system documentation.

Note that not only the tests but also their organization and structure act as documentation. This
is because the volume of tests will eventually eclipse the production code, and all developers should
realize that it is as important to work with and care for the tests as with the production code.

5.3 C Shared professional culture
The software craftsmanship manifesto states: “Not only individuals and interactions, but also a
community of professionals,” as well as “Not only customer collaboration, but also productive
partnerships,” which implies a long-term commitment to what is produced.

The focus on the community of professionals also implies a shared, common culture. As illustrated
in Table 10, we have found evidence that a shared culture of learning, caring, accountability and
transparency is beneficial and aligns with the craftsmanship approach.

C1 Standard development environment
• Literature:
Books B1, B2, B6, B7, and B9 mention the benefits of standardizing on a toolchain. In
particular, book B2 notes that the partnership approach highlights the importance of
focusing on long-lived development tools.
Four books (B4, B7, B9, and B11) explicitly mention how shared coding standards help
communication and readability. Brad Fitzpatrick, in B7, mentions how Google keeps strict
guidelines for programming styles, including code layout, formatting, naming, and which
patterns and conventions to use11.
Several papers also promote common development standards as beneficial for software
craftsmanship in terms of structured exercises to learn the correct shortcuts for the particular
tool in use (P12), improve source code quality (P5), the usefulness of a wiki page containing
both coding style guidelines as well as instructions for how to set up the environment (P2),
capturing IDE configuration in a repository (P9), creating a sense of commitment to a
particular tool (P4) and obtaining necessary knowledge how to best use or not use the latest
technologies, tools, processes, and practices (P8).

• Empirical findings:
At the start of product development, the lead architect chose a shared development style
and code rules. The unified style helped both understanding the code and aided in merging
and back-porting fixes to older branches.
Although standardized, the used toolchain varied over the years. Initially, developers used
Eclipse on Windows laptops, later also IntelliJ and Linux laptops, and eventually, Windows

11https://github.com/google/styleguide

, Vol. 1, No. 1, Article . Publication date: June 2020.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Sundelin and Gonzalez-Huerta, et al.

Table 10. References to C Shared professional culture

Id Name Books Literature Qualitative
C1 Standard development environment B1, B2, B6, B7, B9 P2, P4, P8, P9, SwArch1, Test1

P12
C1.1 Common code style B4, B7, B9, B11 P2, P3, P4, P5 SwArch1, Dev1, Dev3
C2 Common professional culture B2, B7, B8, B9 P3, P7 SwArch1, Dev1, Dev2, Dev3, Test1, Test2
C2.1 Caring B3, B4, B8, B9 P1, P3, P7 Dev1, Dev2, Dev3, Test1, Test2
C2.2 Clear roles, responsibilities B3, B8 P3 SwArch1, Dev1, Dev2, Dev3, Test2
C2.3 Definition of Done B3, B7, B8, B9, B11 P3 Dev1, Dev3, Test2
C2.4 Pride B5, B6, B7, B8 P4, P17 Dev3, Test2
C2.5 Collective ownership B7, B8 SwArch1, Dev3
C3 Cross-team communication B3, B7, B9 P1 Dev1, Dev2, Dev3, Test2
C3.1 Cross-team forums B3, B9 P1, P2, P3, P4 Dev1, Dev2, Dev3, Test2
C4 Visibility / Transparency B1, B3, B6, B7, B9 P3, P9

B11
C4.1 Visible backlog B3, B9, B11 P3 Dev2, Test1, Test2
C4.1.1 Technical debt visible, acted on B9, B11 P5 SwArch1, Dev1, Dev2, Dev3, Test1
C4.1.2 Pull-based backlog B3 P3, P5
C4.2 Visible status B3, B8, B9 P3, P9 Test1, Test2
C4.2.1 Information radiators B3 P3, P9
C4.3 Visible release plan B9 P3 Test1, Test2
C5 Accountability B2, B3, B7, B8, B9 P3, P8 Dev3, Test1
C5.1 Humility B6, B8 Test1
C5.2 Reputation B2, B6, B7, B9 P2, P8
C6 Culture of learning B1, B2, B3, B6, B7, P3, P11, P12, P15 SwArch1, Dev1, Dev3, Test1, Test2

B8, B9, B11
C6.1 Reflecting B2, B3, B6, B9, B11 P1, P3, P5, P11,

P15, P17
C6.2 Kata exercises B6, B8, B9 P3, P10, P12, P13 SwArch1, Dev1, Dev2, Dev3, Test1, Test2

P15
C6.3 Mentoring B1, B2, B3, B5, B6 P1, P3, P8, P15

B7, B8, B9

was dropped as a development platform. Costs and competence were cited as the reason
for changing both IDE and OS. When the vendor released a usable IntelliJ version free of
charge, the perceived benefits (relative to the already free Eclipse) outweighed the cost of
change. Similarly, when the company introduced Linux laptops as a supported development
environment, the organization quickly adopted the new development platform, as it allowed
developers to develop software in an environment close to the target environment, which
always was Linux. When introducing the new IDE, it was configured to format code in the
original Eclipse formatting style.
The lead architect switched build tool from Apache Ant to the more expressive Gradle tool
in mid-2012. The decision was driven by the new tool’s stricter dependency management,
stricter build scripts, increased performance and the ability to more easily develop plugins.
The new tool was used to automate more release tasks, and to build a domain-specific
language (DSL) for deploying test machines in different configurations, resulting in more
varied automated integration testing. As stated by the lead software architect: “Large-scale
software development requires both structure and flexibility, but these must never cancel
each other out. I think Gradle performs a better balancing act than, for example, Maven
and Ant, which are at the opposite ends of that spectrum.”(SwArch1)
The Eclipse formatting rules were added to a shared repository in November 2011, as part
of the first expansion to a remote site. Until then, developers used the standard Eclipse
configuration. In January 2016, a similar ruleset was created for IntelliJ.

, Vol. 1, No. 1, Article . Publication date: June 2020.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Towards an Anatomy of Software Craftsmanship 27

• Analysis:
The standardized code style is beneficial for sharing code between the different branches
as it helps version control tools merge code automatically, without distracting white-space
or formatting differences. Having a shared toolkit also helps people understand and be
more efficient in helping each other.
As evidenced by the empirical findings, standardized tools do not imply a static toolkit.
Instead, a learning organization should always be on the lookout for new and better tools
that do the task at hand more effectively and efficiently. However, the cost of changing
tools will include teaching the organization ways of working with the new tool.
Some tools are more challenging to switch than others. While the swap of the build tool Ant
for Gradle involved few persons and was made abruptly, switching development IDE from
Eclipse to IntelliJ took much longer and included trying to configure the new supported
IDE so it could peacefully coexist with the older supported tool.
Static code analysis and having the build process fail in case of violations helped unify the
code style, as described in item F3.

C2 Common professional culture
• Literature:
While Boehm in P14 expresses a view of “software crafting” as the “cowboy programmer,”
who “hastily patches faulty code by pulling an all-nighter,” this is not the dominant view
in the surveyed literature. Instead, four books (B2, B7, B8, and B9) expressly state the im-
portance of teamwork and how important it is to create a common culture of collaboration.
This view is also expressed in P3 and P7.
Four books, B3, B4, B8, and B9, state the importance of caring for the test suite (the “code
production line”). Hunt and Thomas [38] also mention the broken window theory, first
formalized by Wilson and Kelling [43], and how it relates to the importance of keeping the
test base clean and working at all times.
Any organization larger than an individual would benefit from expressing the expected
roles and responsibilities. Larman et al. in B3 recollect how one chief architect states
that Scrum helped the team take responsibility for their assigned tasks. In B8, Martin
expresses the view of having separate, but jointly collaborating, QA and development
teams. Paper P3 reports how Communities of Practice, together with open spaces, support
discussing problems, solutions, and new ideas regarding a specific role, practice, or topic.
Five books (B3, B7, B8, B9, and B11) and paper P3 explicitly mention the concept of
Definition of Done (DoD), relating to a Scrum practice. Paper P3 refers to the DoD as
partially standardized, while book B8 implies that the actual DoD would vary according to
the business requirements, which analysts should write as acceptance test cases.
To take pride in one’s work is mentioned by four books (B5, B6, B7, and B8) and two
papers (P9, P17), and both Martin in B8 and Hunt and Thomas [38] states how this is related
to responsibility and accountability (C5).
The principle of collective code ownership is a loaded term with multiple views present. Two
experienced interviewees in book B7 lean towards individual code ownership as something
that cannot be denied, while Martin, in book B8, states that it is better to break down all
walls of code ownership and have the team own all code.

• Empirical findings:
In the studied case, all lead developers had prior experience working with overseas teams.
For this reason, they requested that teams onboarded from China (in 2011) and India
(in 2013) were to visit the primary site for several months to learn the product and the

, Vol. 1, No. 1, Article . Publication date: June 2020.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Sundelin and Gonzalez-Huerta, et al.

professional culture, in particular, the product development process, including team tasks,
planning, and verification.When the Indian teams went back to their site, a senior developer
joined them for a year to support and guide their development efforts.
The studied organization had a shared “Definition of Done” with clear and actionable checks
in several areas, such as Requirements, Security, Design, Test, and Customer Documentation
and User Experience. Three different checkpoints were in place:
– End of initial requirements gathering→ start of product development
– End of product development→ start of system testing
– End of system testing→ feature released to the market
Each checkpoint had a template-based DoD checklist, signed off before the feature moved
to the next phase. The requirement engineer (Product Owner, see item F1) signed off the
initial checklist. The ScrumMaster in the development team signed off the middle checklist,
and the team lead in the System Test team signed off the final checklist.
Developers from both the primary and secondary sites indicate that they felt a similar
mindset in both sites. “. . .work culture in [main site] and India was almost similar. . . But in
[other product] I see lots of difference between every corner of the world.”(Dev1)
The developers also appreciated the practice they received and the concrete principles
they learned. “. . . entering into a project with solid principles, these are the layers, with
full hands-on experience, was the best.”(Dev1) “You have a defined way of working, with
respect to how you code the application.”(Dev2)
Two interviewees mentioned the pride they took to make sure that what the team produced
should alsowork. “We had some kind of pride in the team.We don’t hack together something
and just leave it. Rather, when we say that we are done, then we really are done..”(Dev3)
The regression test suite was provided with constant attention and care. To counter in-
stabilities, in 2015, the organization set up a separate daily meeting with a participant
from each team, discussing unstable or erroneous test cases and distributing them between
teams. As described in item C4, the teams distributed and managed the identified tasks.
The test code was seen as important as the production code, as this was the documentation
of how the system should behave. “The test code was equally important as the production
code, because the tests showed what the product could do, like a fact-based answer.”(Test2)
Two interviewees also mentioned how all developers cared to avoid security vulnerabilities
in this product, relative to other experiences: “[In this product] there was a common way
of working, focus on security, risk review, code reviews. . .These were very good controls.
But when I moved to [other product], they did not care about anything. . .Dev2”(.)

• Analysis:
The surveyed literature indicates that the “lone cowboy programmer” view of software
crafting has little support by practitioners, which also is implied by the manifesto focus on
“a community of professionals.”
The concept of Definition of Done (DoD) has been studied before [79] and is well-known in
a Scrum context. According to the study, the focus of the DoD should be on the systematic
requirements that are common for each user story. The studied organization followed this
approach, using three different DoD checklists, corresponding to the three development
phases (elaboration, implementation, and system testing) before a feature was released.
It is undoubtedly the case that developing a large regression test base requires care and
thoughtful design of how to prevent instabilities. For developers to trust that the tests
reflect the true state of the application, the test base needs to be stable and predictable.

C3 Cross-team communication

, Vol. 1, No. 1, Article . Publication date: June 2020.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Towards an Anatomy of Software Craftsmanship 29

• Literature:
Two books (B3 and B9) and four articles (P1, P2, P3, and P9) mention the importance of
communication across teams, for instance, using the concept of Communities of Practice
(CoP) [86]. These communities are used to source and validate potential solutions, spread
knowledge, and instill and reflect upon social and professional norms.
Paper P2 explicitly states that the studied organization had tens of different CoP, which
formed as needed and ceased to work when they were either dysfunctional or had fulfilled
their purpose. The paper also states the importance for a CoP to have a good topic, passionate
leader, proper agenda, decision-making authority, open communication, suitable rhythm, and
cross-site participation, where applicable.
Different Communities of Practice, known as “Guilds” within Spotify, their challenges and
benefits, have also been studied before, e.g. [1, 85].

• Empirical findings:
In order to establish a common way of working, one developer stressed the cooperation
that took place between teams: “It was not unusual to work across team boundaries when
working with the test cases. When we discussed and found that the structure would
not hold any longer, we discussed how to set the new structure. And then two or three
participants would do the actual restructuring and report the progress on our [QA group]
meetings.”(Test2)
Indeed, as the number of development teams grew in the product, a need for more efficient
communication surfaced, both for architecture and testing activities, causing the organiza-
tion to establish both a Team Architect (TA) group and a Quality Assurance (QA) group.
Each group contained one member from each team, meeting regularly, the TA group twice,
and the QA group once per week.
Four developers mentioned the value of the recurring reviews as a means of competence
sharing, for instance: “We used to present how we would implement a particular require-
ment [in the TA group] and get feedback. A very structured approach.”(Dev1)
“Having coverage — what do we think we need to do? So, implementations were reviewed
in the TA forum, and test analysis in the QA forum. Where the other teams could give
their feedback. You explained what you intended to do, and they could comment: ‘No, but
you missed this area’ — because they might have worked in that area recently, and we had
never been there.”(Test2)
One interviewee mentioned that time-boxing was used to limit the amount spent in meet-
ings: “When we grew with more teams, we had to split up in review-groups, to review
each others’ [analyses] in detail. Building those groups based on competence to get good
competence spread. [In the meetings] we made sure that everyone had read the analysis
before the meeting, to be efficient, so we just could focus on the comments [that all members
provided]. Sometimes we had mail conversations in these groups as well. But the analysis
was documented [on the shared wiki].”(Test2)
In the studied product, each TA member had 20% of their time allocated for TA related
improvement tasks, and a similar agreement existed for the QA group.

• Analysis:
Our evidence supports the benefits of Communities of Practice (CoP), both in spreading
knowledge (e.g., via review feedback) and professional norms (e.g. amount of tests needed).
Participants from both the primary and the remote site participated in the weekly CoP
meetings, ensuring that the communication flowed between the sites.

, Vol. 1, No. 1, Article . Publication date: June 2020.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Sundelin and Gonzalez-Huerta, et al.

C4 Visibility / Transparency
• Literature:
The principles of visibility and transparency are closely related to the C5 Accountability
and professionalism inherent in productive partnerships.
Keeping the product backlog visible and up to date is mentioned in three books (B3, B9,
and B11) and paper P3. The Lean principles of keeping options open and limiting work in
progress by having a pull-based backlog are mentioned in papers P3 and P5 and book B3.
The importance of visualizing and acting on technical debt is also mentioned in the
books B9, B11, and in paper P5.
Being open and clear about development status is discussed in three books (B3, B8, and
B9) and in papers P3 and P9, where the goal of maximum project status visibility is stated.
These two papers and book B3 also highlight how the use of information radiators helps in
this regard.

• Empirical findings:
As described in item C3, the studied organization formed cross-teams forums to counter
the blame game often surfacing before meeting a deadline.
One identified problem was the large test base (shown in Figure 5), which required con-
tinuous maintenance effort. As described in items C2 and C3, starting in 2015, teams
coordinated to discuss, distribute and solve issues in this test base. The QA group was also
driving improvements in this area, acting as a discussion board and mentoring others.
Information radiators in the team area, initially two lava lamps, later replaced with nine
remote-controlled LED lamps, were used to broadcast the most important build status.
Stressing to make deadlines often cause people to take shortcuts. One often-used shortcut
was to tag failing or unstable test cases as Ignored. The team mitigated this behavior by
using Git logs to determine who had ignored a particular test case. After an initial grace
period, automated periodic reminders were sent to this author to either fix or remove the
test case. The QA forum discussed and took decisions on how to proceed with such tests.
“Sometimes you had to go in and ignore test cases. . .And later, you got an automated mail,
stating, ‘Please fix. . . ’ By then, you most likely had forgotten about the ignored test case,
so you had like a ‘reproach’ there.”(Test2)
Several interviewees mentioned the importance of visibility, of being honest about the
status and potential obstacles, and being aware of the planned releases. “Having a dialogue,
saying ‘No, we are not done yet, because. . . ’ and highlighting potential delays as soon as
possible. I think that was a strength also, to be able to de-scope, moving to a later feature.
We never skipped [particular phases, e.g., testing], but rather whole areas or scopes..”(Test2)
One interviewee mentioned a particular strategy for dealing with project managers, who
tend to prioritize delivery precision over delivery contents or quality: “A senior developer
taught me to frame estimates like: ‘If I am allowed to do this task, it will take me four
weeks. But if we don’t do it, the cost will be eight hours per week, per team, indefinitely.’
If you start to present those estimates, then [the project manager] will act.”(Test1)
Many interviewees also mention that refactorings A3.4 were important to manage the
technical debt: “The best part was that technical refactorings were taken as kind of a task,
whereas in [other product] it is taken as a feature, and nobody will budget for it..”(Dev1)
“The legacy that exists that is extremely large. . .You always build a little debt. But you
always need to know what your debt is. And work with it continuously..”(Dev3)
“Of course, we would like to refactor more. But I still think that we get a reasonable time
for it..”(Test1)

, Vol. 1, No. 1, Article . Publication date: June 2020.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Towards an Anatomy of Software Craftsmanship 31

• Analysis:
As stated above, visibility and transparency are closely related to the principle of productive
partnerships, where the long-term commitment is seen as more beneficial than the deadline-
driven urge to “patch together something.”
The concept of Technical Debt [22] was created as a metaphor to illustrate when developers
choose or are forced to take shortcuts, such as ignoring test cases. It is important to keep
track of such debt, and the studied organization used automated tools to remind the author
to take action (i.e., consider how to proceed with the ignored test case).

C5 Accountability
• Literature:
Showing accountability for what you produce is mentioned as a craftsmanship trait in books
B2, B8, and B9. In B7, Joshua Bloch states that “ultimately, you are responsible for your
own work.” Hunt and Thomas [38] also note that a professional software developer should
expect to be held accountable and honestly admit mistakes or errors in judgment, which
also plays into item C4. Paper P3 also mentions team accountability, whereas paper P8
stresses personal responsibility and sound work habits as characteristics of successful
craftsmen and -women.
Books B6 and B8 stress the importance of humility to counter professional pride. In B6, the
authors argue that apprentices should combine humility and ambition to progress in the
right direction. In B8, the author stresses the importance for all professionals to show both
pride and humility.
Reputation as a basis for recruitment and professional career are elaborated in four books
(B2, B6, B7, and B9) and papers P2 and P8. Paper P8 argues for adopting a value model
where software leaders have key qualities, such as a proven track record and a personal
approach to solving problems that imparts a signature to their work. Paper P2 refers to how
participation in a Community of Practice enhances professional reputation.

• Empirical findings:
As mentioned in item F2, the project relied on releases built strictly from version-controlled
files, including the build system itself. Published code artifacts were signed by each devel-
oper using their private key, and the signature was validated towards an application-specific
Certificate Authority (CA) at runtime. Components were published by individual develop-
ers, while the composite release was assembled and published by a dedicated Build Master
role, rotating among senior developers, allowing developers to establish a reputation and
enforcing traceability towards accountability.
One developer mentions that team accountability and pride were used to counter the
pressure from other stakeholders to “just get it done.” Another developer stresses the
architects’ accountability and responsibility to communicate a vision of the direction.

• Analysis:
Accountability and responsibility are loaded terms but have long been standard practice
in successful open-source projects, such as the Linux kernel, where no code is merged or
releasedwithout proper sign-off by a responsible releasemaster. These are also highly linked
to item C4 Visibility / Transparency, implying that participants should take responsibility
for their creations, highlight issues and learn from mistakes, rather than place the blame
elsewhere, which is typically the case in dysfunctional organizations [87].

, Vol. 1, No. 1, Article . Publication date: June 2020.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Sundelin and Gonzalez-Huerta, et al.

C6 Culture of learning
• Literature:
Eight books from the SLR findings state the benefits and necessity of a culture of learning
and continuous improvement, which clearly is a major part of software development. Five
of these, B2, B3, B6, B9, and B11, also state the importance of reflecting on improving
efficiency and becoming a reflective practitioner.
Papers P3 and P5 stress the notion of learning from feedback, such as first-hand evidence or
team experiments. Paper P11 calls for ongoing move-testing-experiments, where bugs are
seen as talk-backs from the material that drives the development process forward. Paper
P2 focuses on knowledge sharing and learning as a part of Communities of Practice. Paper
P15 fosters self-directed learning skills. Papers P1, P3, P5, P11, P15, and P17 all mention the
importance of reflecting and improving processes.
Three books (B6, B8, and B9) and five papers (P3, P10, P12, P13, and P15) describe using
reflective practice via kata exercises, sometimes practiced in a coding dojo. Paper P12 relates
the kata concept to “experience levels,” and paper P10 draws conclusions from data gathered
during a global day of kata exercises.
Eight books describe mentoring, with B5 vividly describing how the medieval master
craftsman Antonio Stradivari failed to pass on his violin-making secrets to his sons, either
because he could not mentor them or because he was not aware of them. Papers P1, P3, P8,
and P15 mention the importance of coaching and mentoring as craftsmanship principles.

• Empirical findings:
Learning culture was embodied in the project via a set of exercises called code katas,
which explained and showed how to use the product development framework to develop
functionality with the tests in focus using Test-Driven Development (TDD). The katas were
first developed in 2013, preparing for expansion to the India site, and were updated as the
product framework evolved. Eventually, ten katas were developed, building a simple Java
application from scratch to a fully-fledged GUI, using Scala and the GUI framework used in
the product. The katas built on each other and, depending on the team’s experience, took
between one and two hours each to complete.
The first couple of teams performed the exercises in a group setting. While this was time-
consuming, it also helped the team members to learn about each others’ strengths and
weaknesses and support each other. Throughout the studied period, newly onboarded
developers used the katas to learn how to develop in the product framework. Unlike the
initial sessions, these exercises were done individually or in pairs, shifting the learning
experience more onto the individual.
During the initial years, sprint demos for the entire development organization were used to
spread knowledge and show newly developed features. As the number of people grew, this
became too cumbersome, and the cross-team forumswere used instead to spread knowledge.
“I think those mini-demos we had [in the beginning], for the whole organization, was a
way to spread knowledge. . .Really important also that even though we worked in teams,
the decisions we made were shared among the teams [in cross-team forums].”(Test2)
All interviewees mention the katas and agree that they were a vital teaching device.
“It was a straightforward, focused approach. During the kata sessions, I realized that [in
my team], we have different people with different backgrounds. . . I could see what mistake
that they were doing and I could coach them. . . .”(Dev1)
“One way of practicing is doing structured practice. . . Just to learn the IDE shortcuts.”(Dev1)
“. . . always try to stay ahead of everyone else. . . It’s better to fail, and learn something, than
not try at all.”(SwArch1)

, Vol. 1, No. 1, Article . Publication date: June 2020.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Towards an Anatomy of Software Craftsmanship 33

Two interviewees mentioned retrospectives as a way to reflect on their progress: “We used
to do retrospectives after each sprint, where we realized: ‘OK, we had this problem in this
delivery — how can we avoid it the next time?’, and we used to collect this in an Excel file
to aid the next task.”(Dev2)

• Analysis:
As Brooks stated in B1, software developers are expected to learn new techniques and tools
to improve their skills and productivity. He also mentions the importance of mentoring to
achieve this goal, taking as an example the legendary IBM CEO Thomas J. Watson, who
was shown how to sell cash registers by an older, more experienced sales manager.
However, the concept of code katas takes the showing approach one step closer to software
development. Several books and papers mention the concept, and the studied project was
also highly influenced by katas as a teaching device. As an introductory vehicle to the
application framework, they were successful, as stated by all interviewees. However, few
used them as deliberate practice, which was one of the original goals of the katas.
There is evidence that the teams performing the katas in a group session increased collective
learning by making the group discuss individual problems and solutions.

Summary:When teams are developing and testing features in parallel, the importance of having
a shared professional culture increases. To keep a coherent architecture, onboarded teams and
individuals received structured training, and everyone was expected to contribute to the culture of
learning. The shared culture was encouraged by several cross-team forums, and three checklists
were used as “Definition of Done” checkpoints, corresponding to the development phases.

All interviewees stated that the code kata exercises were effective in increasing the understanding
of the application framework and the expected professional behavior, including testing strategies.
However, there is no evidence that participants used the katas to improve their skills beyond the
initial try, indicating that the goal of deliberate practice was not met.

5.4 F Feedback
Feedback loops have always been important in the software industry, as described both by Royce
in 1970 [72] and by Brooks (B1) in 1975 [13]. However, the last 50 years have seen an immense
change in speed and automation of both feedback loops and the software delivery pipeline.

Feedback is one of the five values of the Agile method Extreme Programming (XP) [5], and it is
intimately tied to the sprint practice of Scrum [6], which also includes explicit review practices.

Lean Software Development [67] also focuses on feedback. In particular, the practices of Deliver
as fast as possible and Build integrity in highlight the importance of caring for the feedback loops
and striving to optimize them, both from a latency and robustness point of view.

Much of the craftsmanship principles detailed in Table 11 are similar to, or complements, Agile
or Lean principles, which is acknowledged in several books, for example, as stated by Mancuso
in B9 [52]: “Agile methodologies help companies to do the right thing. . . Software Craftsmanship
helps developers and companies to do the thing right.”

F1 On-site customer (proxies)
• Literature:
Books B2, B7, and B8 all mention the importance of close collaboration between the
requirement owner and the development team, something that also is a crucial trait of
Agile (e.g. [5, 6]) and Lean [67] processes.
Papers P3 and P5 use the term Product Owner, and report that close collaboration and
communication between the development team and the requirement engineer reduce the
waiting time for clarification or re-prioritization of requirements. Paper P7 is cited as the

, Vol. 1, No. 1, Article . Publication date: June 2020.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Sundelin and Gonzalez-Huerta, et al.

Table 11. References to F Feedback

Id Name Books Literature Qualitative
F1 On-site customer (proxies) B2, B7, B8 P3, P7 Dev1, Dev3, Test1, Test2
F1.1 Requirements B7, B9 P9 SwArch1, Test2
F1.1.1 Accessible B2 P3, P9 Dev1, Test2
F1.1.2 Collaborative B1, B2, B3, B7, B8 P3, P5 Dev1, Test1, Test2

B9, B11
F1.2 Frequent demos B2, B3, B8, B9, B11 Test1, Test2
F2 Short feedback loops B2, B3, B4, B6, B7 P1, P3, P4, P5 SwArch1, Dev1, Dev2, Dev3, Test1, Test2

B8, B9
F3 Review B1, B2, B6, B7, B8 P3 SwArch1, Dev1, Dev2, Test2
F3.1 Team review B3, B6, B7, B8, B9 P5 SwArch1, Dev2, Dev3, Test1
F3.2 Static review tools B4, B7 P5 SwArch1
F3.3 Solution review B7, B9 Dev1, Dev2, Dev3, Test2
F4 Learning from feedback B2, B3, B6, B7, B8 SwArch1, Dev1, Dev2, Test1, Test2

B9
F5 Continuous integration and tests B1, B2, B3, B4, B7 P3, P5, P11 SwArch1, Dev2, Test2

B8, B9, B11
F5.1 Frequent release candidates B1, B2, B3, B9, B11 P5 SwArch1
F5.2 Reproducible releases B1, B2, B3, B4, B8, P7

B9

inspiration for the Scrum process [6] and stresses the technical contributions of the Project
Manager and Product Manager roles in the studied product.

• Empirical findings:
In the studied case, the requirements were version-controlled and located in a single wiki-
based tool since early 2012. Prior to that, requirement engineers were using a proprietary
tool, much less accessible. “[referring to old req. tool] — Oh, that was a tool. . . It took me
ages to learn how to upload an Excel file there. We were supposed to tag requirements to
test cases. It was terribly unwieldy. . . But then we got [the new tool]. . .We could structure
it to fit our needs, with requirements as user stories with a version, a history, in one
place, reachable for everyone, regardless of whether you are a tester, developer or system
tester.”(Test2)
As part of the development phase, teams demoed potential solutions for the proxy customers,
who provided feedback and direction.
“I would say that we talk to the [requirement engineer/proxy customer] at least for half an
hour every other day, during the development of a feature. More in the beginning and in
the end, and maybe with a more quieter period in the middle. But I would say we talk to
them a lot in the middle too. . .About things that pop up, in code, that maybe are not like
the requirement was stated. . . .”(Test1)
“. . . I was just asking the requirements engineer: ‘Is it really this, or you wanted something
else?’”(Dev1)

• Analysis:
As stated in both the SLR and case study results, software craftsmanship values cooperation
rather than confrontation and constant contract negotiation between developers and
requirement owners.
However, constant cooperation also means that requirements need to be in a single, ac-
cessible and version-controlled space, which tracks the evolution of the shared knowledge.
This is crucial in order to know the current status.

, Vol. 1, No. 1, Article . Publication date: June 2020.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Towards an Anatomy of Software Craftsmanship 35

F2 Short feedback loops
• Literature:
Seven of the studied books (B2, B3, B4, B6, B7, B8, and B9) emphasize the importance of
getting quick and relevant feedback on all development tasks. Book B6 explicitly states that
practice without periodic feedback risks developing bad habits and voices the importance
of giving less experienced developers feedback. As stated in itemD1, book B2 mentions fast
feedback as crucial to incremental development, as it allows adjusting direction before it
has progressed for too long. Papers P3, P5, and P9 highlight the importance of fast feedback
loops, also for distributed teams.

• Empirical findings:
In the studied case, product development emphasized getting fast, relevant feedback from
customers or internal proxies. There was an urge to slice large requirements into several
pieces, each building on the previous, but deliverable and testable on its own.

Table 12. Elapsed calendar days per feature size and activity.No QA is the number of features where planned
system verification was deemed unnecessary

Development No QA QA Performed
Est.size 𝑁 𝑥 𝑥 𝜎 𝑁 𝑁 𝑥 𝑥 𝜎

X-Small 122 22 28.3 24.8 37 85 7 13.2 16.5
Small 109 29 35.2 30.9 24 85 8 18.9 26.2
Medium 72 47.5 61.3 47.3 10 62 16.5 26.5 31.3
Large 13 62 60.4 49.7 1 12 20.5 21.6 10.7

Table 12 shows data from 316 features, whose size was estimated into one of four categories
by an estimation group before development started. The table contains the number of
features of each size (𝑁), and the median (𝑥), mean (𝑥) and standard deviation (𝜎) of the
number of calendar days spent in the development (including design analysis) and system
verification (QA) phases. The collected data refers to the period between June 2012 and
December 2016. We tested each group with linear regression and found no statistically
significant change (either positive or negative) between either the development or the
verification duration over the studied period.
The table shows that the organization developedmore X-Small (122) and Small (109) features
than Medium (72) or Large (13) ones. This suggests that rather than spending months
developing several large “chunks of related functions,” the organization valued getting
feedback, both from system testing organizations and real installations. All four groups
have median values lower than mean values, indicating right-skewed distributions.
Features deemed unlikely to impact quality attributes such as performance, stability, or
usability were not individually validated in system verification. As indicated in the No QA
column, this affected 30% of the X-Small and 22% of the Small features. Statistics for features
in system verification are shown in the QA Performed columns.
Half of the X-Small features spent less than 22 days in development, including design
analysis. This is interesting as the organization used three-week sprints, indicating that
these features took around one sprint to complete. Examining the commit statistics for these
features reveals that the median number of days spent in development (i.e., not considering
design and analysis) was 12.5, with a larger mean of 20.8 and a standard deviation of 26.7
days. The system testing organization was also using three-week sprints, which could
explain why the larger features were using close to 21 calendar days on average.

, Vol. 1, No. 1, Article . Publication date: June 2020.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Sundelin and Gonzalez-Huerta, et al.

As described in item F5, teams constantly worked to keep feedback loops from the Con-
tinuous Integration builds as short as possible. This involved both utilizing hardware by
executing tests in parallel and redesigning test cases (e.g., avoiding sleep statements).

• Analysis:
Table 12 indicates that the majority of features were estimated to be X-Small or Small
and that this is also reflected in the development and system verification time. However,
as indicated in the table, some features are, due to their nature, impossible to slice into
smaller parts. This affected 27% of all features, most of them medium-sized. Planned system
verification was omitted in 72 of the analyzed features, meaning that more than one in five
(22%) features were deemed only to contain functional aspects, which was validated only
by the development team before being deployed in production.

F3 Reviews
• Literature:
Reviews have long been used as a tool to judge solutions and provide knowledge sharing,
and books B2 and B6 state that the review process goes both ways, where junior devel-
opers also review everything produced by the team for the purpose of learning. Book B8
recommends pair programming as an efficient and effective form of instant code review,
and papers P3 and P5 confirm the importance of frequent reviews as the core of Software
Craftsmanship principles.
Two books (B4 and B7) and paper P5 mention the importance of tools that automatically
perform some review, including enforcing formatting rules.
Regarding reviews of solution proposals, there are contrary opinions in B7. One interviewee
(Brendan Eich) states that this implies a waterfall process, which should be avoided. Still,
two other interviewees state that an adequately prepared design review can strengthen
the solution. However, they make a distinction between an internal design review, whose
purpose is to criticize or find omissions in the implementation, and an external review,
involving clients, clarifying that the proposed solutions solve the intended problem.

• Empirical findings:
In 2012, following the expansion to the first remote site, the studied organization started
using a wiki platform supporting page templates to introduce an Implementation Proposal
(IP). For each feature to implement, each team was expected to produce an IP to be reviewed
in a team architect (TA) forum. While team architects reviewed the technical solutions, a
test responsible also took part in weekly recurring meetings (QA group) focusing on test
structure and test strategies; see item C3.
During the studied period, 586 IPs were produced, of which 460 were using the wiki-based
format (starting from January 2012). Surprisingly, we also found 24 requirements without
a corresponding IP. In 4 of these cases, the actual requirement was canceled without being
completed. In the remaining 20, there was other reasons for omitting the proposal, such
as the solution being described elsewhere or the lead architect doing the implementation
himself.
In 34 out of the 460 wiki-based IPs, the first code commit predated the creation of the IP page,
and in 15 cases, it happened on the same day. This indicates that teams were prototyping
(on a personal or team-based branch) as part of writing the proposed solution. The IP page
contained various sections that were actively updated during both the development and
the system testing phases.
Related to code reviews, human reviewers should focus on content rather than style. To
meet this goal, as described in item C1, mandatory code formatting rules and static checks

, Vol. 1, No. 1, Article . Publication date: June 2020.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Towards an Anatomy of Software Craftsmanship 37

using the PMD and FindBugs tools were introduced, causing the build to fail in case of
violations. An earlier attempt in using advisory Sonar rules (post-commit, sending feedback
through email) proved unsuccessful, as most developers ignored these warnings.
The product started using advisory PMD checks in August 2012 and made them mandatory
in December 2012. The number of checked rules was initially small but grew over time. At
the end of the study, it comprised 373 FindBugs, 155 built-in, and 7 application-specific
PMD rules, developed by a team architect to flag particular code patterns as unwanted in
the application code.
Starting in April 2012, a number of invariant-checking unit tests, called “metatests,” were
developed to give fast developer feedback on the expected behavior of the produced code.
The meta-tests scanned the project classpath, performing static checks on classes that
match particular application-specific criteria. Examples of such tests are “Request and
Response classes shall have validation annotations on all fields” and “All remote-invoked
methods must have an audit log annotation.”
The first Gerrit review took place in June 2013. During the studied period, 3802 reviews
took place, out of 54637 total commits. One interviewee indicated that the team used pair
programming rather than Gerrit-based reviews: “Our team made a decision not to use
Gerrit for review. Instead, we were pairing up, reviewing by sitting close, working on the
same task, and interacting with each other’s code.”(Dev3)

• Analysis:
Reviews can be used both to spread knowledge and to enforce an architectural direction.
However, to be effective, they require motivated, knowledgeable, and accessible reviewers.
As evidenced in the findings, the solution review step did not preclude coding. In over 10% of
the found cases, the first line of feature code (presumably a prototypical solution) predated
even creating an empty IP page. Instead, the solution review should focus on whether the
proposed solution aligns with the overall architecture and direction of the product and
sharing the concepts and the approved design between different teams.
However, feedback frequency is also important - it is wasteful to spend effort in a direction
not aligned with the overall product architecture. Thus, architects should discuss the
intended solution before starting to write a formal implementation proposal.
Static review tools have the advantage that they are objective, consistent, and persistent,
but they are limited in scope and have the disadvantage of flagging false positives. The tool
can function as a teaching device by tailoring the tool error message or adding application-
specific rules. This studied case used the PMD tool to meet this end.

F4 Learning from feedback
• Literature:
Six books (B2, B3, B6, B7, B8, and B9) report on the importance of learning from received
feedback, with book B6 stating that useful feedback needs to be possible to act upon.
Papers P3, P5, and P11 state the importance of learning through fast feedback loops and
ongoing move-testing-experiments. As discussed in item C5, this is also intimately coupled
with a culture of learning.

• Empirical findings:
Five interviewees mention software development as a learning exercise and highlight
reviews as a tool to share knowledge and get feedback, not block development. One
interviewee reflects on the importance of learning from customer feedback: “[reacting to
defect reports by]. . . taking a step back, and analyze: ‘This was an area that the customers
were into. . .Are there more black spots like that?’”(Test1)

, Vol. 1, No. 1, Article . Publication date: June 2020.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Sundelin and Gonzalez-Huerta, et al.

To a large extent, the practices in item C5, being focused on learning, also apply here. The
team architect and quality assurance roles (TA & QA, see C3, A1) were also expected to
guide their team members via regular feedback and share experiences across teams.

• Analysis:
By focusing on the learning experience of software development and striving to use
feedback (whether automated or manual) to learn new and better development practices, it
can be argued that the organization as a whole prioritizes learning in a structured way.
This is also exemplified by the Lean principle of Amplify learning [67].

F5 Continuous integration and tests
• Literature:
As stated by Brooks in his commentary to the 20th anniversary of the original publication
of B1, technological progress has led to that “[Microsoft] rebuild the developing system
every night [and run the test cases]” [13]. These days, when 25 more years have passed,
the nightly runs have been replaced with on-demand-builds, which run after each check-in.
The importance of this evolution is stated in eight of the studied books, and papers P3,
P5, P9, and P11 also discuss the benefits of continuous integration and regression testing for
software craftsmanship.

• Empirical findings:
Automated build tools, first Hudson, then Jenkins, were used since the inception, including
mandatory testing phases following the compilation and building of the software. The
organization relied on personal responsibility, with code signing using personal certificates
(see item C5), although the release building process was highly automated using build tool
plugins, enforcing rules about tagging and versioning of artifacts and dependencies.
As seen in Figure 5 (see item D2), the amount of test code soon eclipsed the amount
of production code, as the number of test cases kept growing along with the product
functionality. Initially, the test suite was executed sequentially, in a monolithic fashion.
Later this was broken down into many parallel tasks, each running towards an isolated
system under test (SUT), to decrease feedback latency. The management (booking, releasing,
reinstalling) of these systems was handled by an own-developed test-host installation and
reservation system, utilizing the SUT to the highest possible degree. At the end of the study,
each commit was triggering up to 181 parallel integration test tasks.
In some circumstances, concurrency issues (e.g., threading) caused tests to fail sporadically
(flaky tests). One such example was related to alarm sending and logging. The first naïve
solution by individual developers was to add sleep statements into the flaky test case,
delaying the test execution by a fixed amount of time. In addition to being wasteful of
resources (as the test host was not performing any useful tests, delaying feedback), this
also caused additional instability, as the required delay would be dependent on the CPU
and network load on the physical machine running the virtual machine under test. After
discussing in the TA group (see item C3), a senior developer made a special “test helper”
using barrier synchronization to solve the instability. Further test helpers solved most
causes of instability. The remainder (e.g., due to dependencies on manipulating features in
complex third-party software) were relegated to nightly runs when the test environment
was less used and more stable.
Between December 2010 and December 2016, the team made 721 candidate releases of
the main product. Of these, 248 turned into sharp releases (where 36 were major feature
releases, and the rest was smaller defect corrections). On average, this amounts to 10.0
candidates and 3.4 sharp releases per month. Between March and December 2016, the

, Vol. 1, No. 1, Article . Publication date: June 2020.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Towards an Anatomy of Software Craftsmanship 39

continuous integration environment made, on average, 1428.6 builds per month on the
master branch (not including feature branch builds).

• Analysis:
Many authors can testify to the utility of Continuous Integration. However, running the
tests is not enough; the organization must also act on the feedback provided by the test,
including fixing errors, unstable tests, and focusing on keeping the feedback cycle time
reasonable. The studied organization strove to shorten the feedback loops for the integration
tests to give relevant feedback as soon as possible. Test case structure was also regularly
discussed in the QA forum (item C3 and C4).
Making frequent release candidates and releases means that manual intervention in the
release process needs to be kept to a minimum. Still, the organization valued the account-
ability given by personal code signing of individual artifacts, release candidates, and sharp
releases. One benefit of frequent releases is that there is no “big-bang effect” when making
the sharp release. By that time, recurrent Continuous Integration jobs should already have
verified the constituent components and the functional difference since the last release
should be small and manageable.

Summary:
As stated in the introduction, feedback loops have been at the core of software development for

at least 50 years. However, the tools and frequency of the feedback have changed over the years.
The studied organization not only used Continuous Integration practices, but also worked with
them, striving to optimize, and get faster feedback.
Similarly, realizing the cost and scarcity of human feedback, the organization strove to utilize

review tools, such as static code review, invariant-checking unit tests, and web-based review tools
such as Gerrit. There was a mandatory design review step to spread knowledge and align directions,
but this did not prevent teams from prototyping before describing their first proposed solution.

We also see evidence that in some cases, the agreed process (e.g., reviews, solution descriptions)
was not followed. This indicates that the organization tolerated deviations from the process, as
long as the perceived benefits of the deviation outweighed the perceived costs (e.g., the lack of
competence spread or the risk of lower quality).

6 DISCUSSION AND IMPLICATIONS
6.1 The principles and practices of software craftsmanship — in literature and in our

case study (RQ1 and RQ2)
Tables 6, 8, 10, and 11 illustrate the overlaps between the literature and the presented anatomy of
craftsmanship. Among the most notable discrepancies and expansions, we consider the following.
A key architectural principle in our anatomy is the A1 Participating Software Architects, i.e.,

architects need to participate in day-to-day software development. This extends the principles from
the literature of passionate, skilled technical leaders who lead empowered teams both practically
and concretely. We highlight the decision of A3.2 Judicious use of third-party products as a key
practice to follow when setting architectural direction. In addition to functional requirements,
quality requirements such as testability and upgradeability must be considered when choosing
software components. We note that the architectural direction should be exemplified via concrete,
testable A3.3 Common application patterns, rather than comprehensive documentation.
Our results also emphasize that tests should be structured in D2 layers, and every test case

should be D2.1 stable and independent to reduce dependencies and enable faster fault isolation
and correction. Tests were kept in focus through the principle of D2.3 Test-focused Development,
with tests developed close to the production code, using D2.3.1 Pairing and D2.3.2 Test-Driven

, Vol. 1, No. 1, Article . Publication date: June 2020.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Sundelin and Gonzalez-Huerta, et al.

Development. We also highlight that the relative lack of comprehensive design documentation was
alleviated by having a test base of D2.4 expressive tests, with a simple structure, which also served
as D3 Design documentation, together with a collaboratively edited wiki system.
An Agile setting expects teams to be self-organizing, without structure imposed by external

forces. However, this freedom should be supported by C2.2 Clear roles and responsibilities and
shared C2.3 Definition of Done (DoD) criteria, which help all participants in the organization know
what to expect, and when to expect it. This is not to say that external forces have to appoint these
roles and check on the DoD, only that the team needs to organize so that the roles are set, and
the DoD criteria are fulfilled. To gain trust between different stakeholders and to allow corrective
actions, C4 Visibility is essential, including backlog, issues, technical debt, and C4.2 Visible status.
Another key practice is C5 Accountability, affecting both transparency and reputation.

Like the agile principles, our vision of craftsmanship also focuses on feedback loops, such as
F1.2 Frequent demos. The practice of F3.3 Solution review is highlighted to spread knowledge
between teams and to ensure that the proposed solution aligns with the architectural direction. It
is important to note that, when needed, the proposed solution should be vetted using prototypes
and real test cases before the review takes place. The continuous learning organization values
F4 Learning from feedback and sees this as positive. Defect reports can be seen as both good and
bad. While reoccurring defects are clearly bad practice, the first occurrence of a particular issue is
judged from case to case. Metrics are used accordingly.

6.2 What are the consequences of applying the software craftsmanship principles and
practices in real life? (RQ3)

Based on the studied case, we found several examples of how software craftsmanship is embodied
in practice and the consequences it brings:

• Developing in a D2.3 test-focused way does allow production code to be refactored and
shaped into a clear representation. However, as the product accumulates features, the test
codebase will grow faster than the production code, more so for the integration test code than
for the unit test code. Therefore, it is important to D2 test at several layers and constantly
work with the test code, which is as essential to keep C2.1 clean as the production code.
Regarding A3.4 refactorings, the studied organization made on average 16.8% refactoring
commits during six years, excluding refactorings made as part of regular features.

• The D2 test code serves two purposes — first, it should verify that the system still behaves
as it used to do, and second, it should be D3.1 readable as a description of what the system
does. In order to meet these goals, the tests need to be F5 frequently executed, and failures
or broken builds need to be quickly F4 acted upon. In some cases, organizational support
is needed to enforce these norms, and C3 communities of practice can be used to solve this
efficiently.

• There is a trade-off to be made related to verification efficiency and correctly mimicking a
deployed system. Solutions to D2.1 unstable test cases can include re-architecting or adding
helper functions to make them more stable, increasing testability and trust in the test suite, at
the cost of allowing deviations from a production system. As these added functions will not
be part of the end-to-end delivery, it is important to keep them A2.1 architecturally isolated
from the object under test. Later test phases, such as system testing, should then test the
product from a black-box perspective.

• A1 Software architects and A1.2 senior developers play important roles in architectural di-
rection and forming a C2 common professional culture. In the studied case, the creation of
a C shared professional culture was facilitated both by relocating the remote teams to the

, Vol. 1, No. 1, Article . Publication date: June 2020.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Towards an Anatomy of Software Craftsmanship 41

primary site for a few months, to learn the product and the development process and by the
C6.2 structured exercises (katas) used in order to C6.3 teach newcomers the preferred way of
developing new features.

• F2 Frequent feedback is important, both from tools, artifacts, and other stakeholders, such as
F1 requirement owners, F3.1 other peers, verification engineers, or target installations.

• All interviewees mention the structured, down-to-earth, practical C6.2 kata exercises as
important tools to learn the development process and the preferred way of developing the
product, particularly in a group setting. However, there are few indications in the studied
case that the katas were used as deliberate practice.

• While the organization advocated and the kata exercises taught D2.3.2 Test-Driven De-
velopment, the organization also realized that TDD could be a hard technique to master.
Nevertheless, tests and verification were kept in D2.3 focus by keeping the development
team responsible for automating functional test cases and keeping the manual test cases to a
bare minimum.

• Having a C1 common toolchain and striving for C6 mastery of this toolchain is yet another
aspect of a common professional culture. Still, this does not mean that the tools should be
static. In the studied case, the organization changed tools several times to be more productive.
In some cases, the switch was “abrupt” (e.g., version control and build tools), and in some
cases, the switch was “gradual” (e.g., supported IDE). The organization should be prepared to
C6.3 teach members the new tools, using guidelines, seminars, and D2.3.1 pairing.

We also found instances where the studied organization fell short of the espoused principles—for
instance, regarding C6.2 kata exercises being used solely for new developers, in an individual and
isolated setting; a few features being developed without the requested F3.3 solution review; and
there were certain teams where D2.3.2 pairing and C6.3 mentoring worked better than in others.
In this regard, the software craftsmanship principles and practices can be seen more like guiding
lights than absolute truths. However, we still think it is worthwhile to study them more.

6.3 Software Craftsmanship vs. Agile Software Development
Following the organization in paper P5 [51], here we compare, in light of the findings from this
study, the principles from the Software Craftsmanship Manifesto with the principles in the Agile
Manifesto.

6.3.1 Well-crafted software vs. Working software. Software craftsmanship focuses on well-crafted
software, while agile software development promotes delivering software as quickly as possible.
Therefore, craftsmanship goes beyond project activities reported as the most frequently used agile
practices, e.g., standup meeting, backlog, sprint/iterations, and sprint planning [84]. According to the
State of Agile Report [19], companies applying agile practices rarely report on practices such as
F5 Continuous integration, D2.3.1 Pairing, D2.2 Automated testing, D2.3.2 Test-Driven Development,
and A3.4 Refactoring. The results of the SLR, together with the findings of our case study, suggest
that craftsmanship focuses on offering agile organizations more down-to-earth, technical practices
to improve long term stability and quality, e.g., A2.1 Isolated and Layered Architecture or the use of
A3.1 Minimalistic Frameworks.

6.3.2 Steadily adding value vs. Responding to change. Rather than only quickly reacting to changes,
craftspeople are expected to also come up with their own improvements, such as A3.4 refactorings
or improvements in the overall production (e.g., tools, such as optimizing the C5 continuous
integration environment or D2.2 automated testing). This is to make sure that F5.1 frequent releases

, Vol. 1, No. 1, Article . Publication date: June 2020.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Sundelin and Gonzalez-Huerta, et al.

and F2 short feedback loops prevent degradation of the A architecture, which would limit the ability
to continuously and steadily add value.

A review by Kupiainen et al. [46] indicates that the metric with the strongest influence in Agile
and Lean contexts was velocity, followed by effort estimate and customer satisfaction. However, we
argue that not only velocity but also clean and bug-free code matters. The same authors report that
metric information was broadcast in hallways to motivate people to react faster to problems. Thus,
our C4.2.1 information radiator practice was also used to influence behavior here.

6.3.3 Community of professionals vs. Individuals and interactions. Emphasizing the community of
professionals over individuals implies that craftspeople would be expected to help each other grow
through C6.3 mentoring, constructive feedback, and experience sharing [52].

Our literature and case study results confirm the importance of a C2 shared professional culture
and F feedback as essential themes. Quick F2 feedback loops enable organizations to D1 develop
incrementally, concentrating on small deliverables with predictable lead-time. This is crucial for
keeping a sustainable pace adding value, and, if needed, to “fail fast.” The shared professional
culture might impact the ability of the organizations to build up a cross-site sense of belonging and
foster the creation of shared ways of working in distributed environments.
The growth of open-source communities and the sponsoring and development of open-source

software by commercial vendors can also be viewed as emphasizing software development commu-
nities.

6.3.4 Productive partnerships vs. Customer collaboration. While Agile focuses on interactions and
collaboration with customers, the craftsmanship approach takes a more long-term, strategic view.
For craftspeople, the produced artifacts, knowledge, and learning become part of the organizational
knowledge and strengthens the ability to respond and assimilate changes. By being C5 accountable
and practicing C4 visibility and transparency, craftsmanship brings a balancing force to customer-
focused agile practices.
In the studied case, customer collaboration was implemented through customer proxies and

in the “Internal live customer” phase, starting after less than a year of development. This proved
successful in sharpening the development teams and spreading knowledge about the product and its
environment to integration engineers, which helped smoothen the transition to external customer
deployments. After deployment to external customers, the requirement inflow increased, but the
organization had already achieved a smooth development process and could keep up with demands
without compromising quality.

6.4 Software Craftsmanship vs. Lean Software Development
In this subsection, we compare our anatomy, and the case study results, with the seven principles
of Lean Software Development, outlined by Poppendieck & Poppendieck in [67].

• Eliminate waste can be seen as a core trait also in Software Craftsmanship. By focusing on
the Steadily adding of value, and principles that encourage that, a responsible craftsman tries
to eliminate waste from any processes or tasks.

• Amplify learning also lies at the core of craftsmanship, fostering a C5 Culture of learning via
C6.3 Mentoring and C6.2 Deliberate practice, and F4 Learning from feedback.

• Decide as late as possible is a way to adjust your design up until the last responsible moment,
which is core in D1 Incremental development, where F1.1.2 Requirement changes are seen as
a comparative advantage.

• Deliver as fast as possible puts value on getting real, actionable F Feedback, on many levels,
both via F3 Reviews and F5 Continuous integration and tests, using F2 Short feedback loops.

, Vol. 1, No. 1, Article . Publication date: June 2020.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Towards an Anatomy of Software Craftsmanship 43

• Empower the team is also at the core of craftsmanship, where the architecture invitesA1.3 Em-
powerment, and the professional culture values C4 Visibility and accountability.

• Build integrity in has a direct parallel in the D Iterative design, development, and verification,
where much of the focus is on layered verification in the D2 Testing pyramid, and that the
tests should be D3.1 usable and readable as documentation of a running system.

• See the whole is arguably the focus of many craftsmanship principles, both from an A Value-
focused architecture theme to the Productive partnerships envisioned in the manifesto.

While there are similarities between the lead architect in the studied product and Poppendieck’s
chief engineer principle [67], there are also differences. The program planning and budgeting
were performed by different roles in the studied case, outside the scope of this paper. The lead
software architect focused solely on the software and its structure to enable efficient development
of features valued by customers while still meeting the required quality requirements. There were
also strategic product managers and system managers dealing with customer requirements and
strategic directions for the product, also outside the scope of this paper.

6.5 Returning to the Software Craftsmanship Manifesto
Looking at the manifesto12 values through the lens of our anatomy, we find the following:

• “As aspiring Software Craftsmen we are raising the bar of professional software development
by practicing it and helping others learn the craft.” In the first line of the manifesto, the
authors explicitly value the C6 Culture of learning, and the F4 Learning from feedback. The
need for constant practice also aligns with A1 Participating Software Architects. Although
F3 Reviews are not explicitly mentioned, this is one example of a setting enabling experience
sharing, either automated through static review tools or manual, via solution or code review.

• “Not only working software but also well-crafted software” as a statement does not define
what distinguishes the two classes of software. Our anatomy considers well-crafted software
as being composed of A3Clean, minimalistic code, which isD1 incrementally developed, during
constant A3.4 Refactoring. The architecture enables A2.1 isolated features, using layers, and
features are developed with D2 layered testing in mind. Functional tests are written by the
D1.2 team that develops the feature, so that they are D3.1 readable as documentation.

• “Not only responding to change but also steadily adding value” focuses on the longer-term
perspective and the ability to add value to the software in a predictable manner continually. To
meet this goal, in addition to the well-craftedness mentioned above, the A architecture should
focus on helping value-creation, making it easy to validate changes through F5.1 Frequent
release candidates and through F5 Continuous integration. To keep track of the current
state of the product and the project, C4 Visibility and transparency are important, as is the
management of C4.1.1 Technical debt.

• “Not only individuals and interactions, but also a community of professionals” emphasizes
the community aspect of software development, and many items in the anatomy focus on a
C Shared professional culture. Important aspects of a C2 Common culture include fostering
C2.1 caring for your artifacts, having a shared sense of C2.4 Pride, and C2.2 Clear roles
and responsibilities. To balance the pride, it is also important to keep C5 Accountability and
C5.1 Humility, and craftspeople would do well to manage their C5.2 Reputation.

• “Not only customer collaboration, but also productive partnerships” again focus on the
longer-term view, where C5.2 Reputation is at stake. Our anatomy mainly focuses on the
requirement formalization’s collaborative aspects, using the F1On-site customer approach and
F1.1.2 Collaborative requirements elicitation, by constant communication between the design

12http://manifesto.softwarecraftsmanship.org/

, Vol. 1, No. 1, Article . Publication date: June 2020.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 Sundelin and Gonzalez-Huerta, et al.

team and the requirement owner (customer proxy). Likewise, verification is a collaborative
endeavor, where D1.2 teams take responsibility for delivering functionally verified features.

To sum up, our anatomy makes no references to the “lone cowboy programmer” craftsman
stereotype mentioned by Boehm in P14 [9]. Instead, it emphasizes the community aspects of
modern software development, the importance of mentoring and tutoring newcomers to the
field, and the need for constant learning in software development. While there are undoubtedly
programmers that prefer solitude and would rather not communicate with others, our anatomy
concretizes most of the manifesto ideas, bringing evidence on how some of the craftsmanship
principles can work in practice. It also emphasizes the need for senior developers to engage in
teaching and mentoring, in addition to behavioral rules to foster a shared culture of learning and
professional development.
To be fair, our anatomy does not emphasize the linear progression of apprentice, journeyman,

and master outlined by McBreen in B2 [57]. Rather than designating individuals into specific labeled
categories, the anatomy emphasizes everyone’s responsibility to contribute to a culture of learning,
caring for the codebase and the architecture. Naturally, the more senior developers would take
a more leading approach, such as in the cross-team forums. Likewise, leading developers were
cognizant of the importance of a shared professional culture and used both team relocation and
kata exercises to try to instill a common way of working to new project members, regardless of
their prior experience.

7 VALIDITY
In this section, we discuss the threats to validity from four different angles: construct validity,
internal validity, external validity and reliability [91].

Construct Validity deals with whether the studied measures really reflect the constructs that
the researcher has in mind and what is stated in the research questions, and the ability of the
metrics to informs about the concept [69].

For the qualitative data, construct validity was enhanced by the two additional authors reviewing
the flexible interview protocol, making clarifications based on this feedback. We also presented
an intermediate version of the anatomy to the studied organization, after analysing the interview
data, and received valuable feedback.
Much of the quantitative data comes from Git logs, and using such information to illustrate: i)

the proportion of development activities (e.g., feature development or refactoring); ii) the iterative
nature of the development; and iii) the usage of layered testing; has some risks that can challenge
the reliability of the results.

In particular, when dealing with the proportion of development activities, we analyzed individual
commit messages and relied on the organization’s strict commit tagging policy. Developers had to
tag each individual commit with a code depending on the activities they were carrying out. Only
0.2% of the commits were not properly tagged. We tried to mitigate this threat to construct validity
by defining a metric on data that was created with the same objective: to be able to identify the
development activities. During the studied period, the organization had no organizational goals
associated with this metric (e.g., rewards associated to refactorings or bug fixes). Had such goals
been used, this metric would not have been reliable, as developers could have been expected to
change behaviour to meet such goals.

For analyzing the adherence to incremental development, we use the evolution of the codebase
over time, for the major types of source code. One of the main threats to validity in this case is
whether the languages (i.e., Java, XML and Scala) are comparable. As XML is much more verbose
than Java, it will grow faster, but the main usage in this analysis is not the growth speed itself, but

, Vol. 1, No. 1, Article . Publication date: June 2020.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Towards an Anatomy of Software Craftsmanship 45

the fact that they grow together in at sustainable pace. In a non-incremental development scenario,
we would expect the production code and the unit test code to grow from the start of the project
until the start of the development of integration tests, where these two will suffer a sudden decline
in their growth and the focus would move to integration. However in this case the different types
of code grow linearly, with slightly different speeds.

Finally, regarding our proposed construct of a testing pyramid and layered testing, we use both
the fact that developers state that automated tests were important, and the volume and ratio of
test code versus production code. Our proposed metrics (lines of code and the ratio of tests versus
production code) say nothing about the quality of said code, but they do illustrate that the different
classes of code grew over time, and as the product grew more feature-rich, the amount of different
test code grew alongside the production code, although at different speeds. We argue that this
shows that in this product, developers took care to layer their tests into different categories of tests
and that this behavior was consistent throughout the studied period.

An important aspect to consider when using this data source is the branching pattern and how
commits were merged or rebased. In the Git version control system, authors may “squash” commits,
perhaps performed by different authors at different times, into one new commit, discarding the
constituent commits. This was not an approved practice as the studied organization valued seeing
the individual commits as they were written and pushed to the central repository.

Most development took place in a single “master” branch for the duration of the study. Features
developed in other branches were eventually introduced into the master branch, typically via the
Git rebase function, keeping a linear history by rewriting commits. However, during rewriting,
the original author information, including the commit date, is preserved, even if the commits are
reordered in the git log. This allows statistics based on Git dates to be reliable data sources, as the
commit date reflected when the actual code was changed, not when it was introduced into the
master branch.

Internal Validity deals with whether there might be other, non-studied factors that could
explain some of the findings.
We used the mixed-methods approach of triangulation to increase internal validity We used

Google Scholar to search for papers to form a start set. As we only found 4 relevant papers, we
added 5 additional based on experience. This personal bias could threaten internal validity. However,
we believe that its impact is minimal after performing four forward and backward snowballing
iterations. We have screened 478 references, 782 citations, and 146 books during these iterations.
Moreover, Mourão et al. have shown that combining the database search with forward and backward
snowballing improves the precision and recall of the literature review [60].
Where possible, we used both quantitative and qualitative data sources. However, there might

still be other, non-studied, explaining factors that impact the results. We are aware that the studied
development project did not adopt all software craftsmanship principles that we identified in the
literature. This remains a threat to internal validity of our work.

External Validity concerns the extent to which it is possible to generalize findings and whether
the findings are of interest to people outside of the investigated case.

One of the five misunderstandings about case study research is the inability to generalize from
a single case [28]. Following Flyvbjerg, we have focused on analytic generalization rather than
statistical generalization by comparing the characteristics of the case to a possible target and
presenting case-specific characteristics, as much as confidentiality concerns allowed.
We looked outside the studied case by reviewing other literature for findings or themes to

increase external validity.
This buttressing is documented in the Systematic Literature Review section of the paper, and

the associated data appear as references throughout the results and analysis sections. However, it

, Vol. 1, No. 1, Article . Publication date: June 2020.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46 Sundelin and Gonzalez-Huerta, et al.

must be acknowledged that this buttressing is based on limited empirical evidence. Additionally,
the results here are only circumscribed to the analyzed context. More studies in other systems and
other organizations are needed to better understand the effect that craftsmanship principles might
have on the developed product, the development process, and the organization.

Reliability concerns whether the data and analyses are dependent on the specific researchers,
and this is a significant threat to validity for this study, as the first author was part of the studied
product development during the whole studied period. To increase reliability, the second and third
authors were used in a supporting role, with at least one of them being active participants in all
interviews. The first author transcribed all recorded interviews. The transcripts were reviewed by
the second and third authors, who separately coded three interviews each, for comparison with the
first author’s codes, who coded all interviews.
The interviews, conducted between July 2018 and January 2019, used a convenience sample of

participants, focusing on including many different aspects, illustrating the concepts and principles
used in the development process. Two interviewees were from the outsourced site, and two were
women. The lead architect was interviewed separately by the second and third authors, as he had
worked closely together with the first author during the studied period.

A threat to reliability is that the interviews took place some years after the actual studied events.
In addition to memory errors in the interviewed participants, it also meant that it was hard to
reach persons who were part of the product for a shorter time. Thus, the views of such “short-lived”
participants may have been different than the interviewees.

We strove to reduce memory errors by seeking additional data in quantitative sources (VCS logs,
wikis, requirement tools) using archival analysis whenever possible.

8 CONCLUSIONS AND FUTURE WORK
8.1 Conclusions
Regarding RQ1, how Software Craftsmanship has been conceptualized in literature, although the
principles have a long history in grey literature, we found comparatively few published research
articles. In our systematic literature review, we could find only 18 papers discussing the principles
to some extent, see Table 4. Based on these papers, we found 11 books, of which seven were new to
us before starting this study.
In order to conceptualize the findings, and to illustrate which of these principles and practices

that we can see in our studied case (RQ2), we drew the anatomy map, comprising of four key
themes, with 17 principles and 47 practices; see Figure 3 and Table 6, 8, 10 and 11.
In answering RQ3, what consequences applying the practices bring, we drew examples from

our studied case, using both quantitative and qualitative data. Most of these principles align well
with core Agile and Lean principles but place a higher weight on the technical practices.

Although the Agile and Lean principles seem quite well-researched, the Software Craftsmanship
principles seem to warrant more systematic studies by the research community.

8.2 Future Work
This study was performed in a particular setting, having quick feedback cycles from customers
with rapidly changing requirements. Whether the principles still apply in other settings, such as in
situations with more static and stable requirements, or different organizations, remains to be seen.
In future studies, we intend to study how these practices have affected the defect statistics,

internal and external quality, and how the principles have been applied as the organization has
changed. We also plan to explore the relationships between Agile and Lean software development
and software craftsmanship. We are aware that both Agile and Lean software development have

, Vol. 1, No. 1, Article . Publication date: June 2020.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Towards an Anatomy of Software Craftsmanship 47

aspects similar and overlapping with software craftsmanship. Thus, we would like to explore this
in detail in subsequent publications.

ACKNOWLEDGMENTS
This research was supported by the KKS PLEng 2.0 grant at Blekinge University of Technology, and
Ericsson AB, through the SHADE KKS Hög project with ref: 20170176, and through the KKS SERT
Research Profile with ref. 2018010 project both at Blekinge Institute of Technology, SERL Sweden.

REFERENCES
[1] D. Šmite, N. B. Moe, G. Levinta, and M. Floryan. 2019. Spotify Guilds: How to Succeed With Knowledge Sharing in

Large-Scale Agile Organizations. IEEE Software 36, 2 (2019), 51–57. https://doi.org/10.1109/MS.2018.2886178
[2] Pekka Abrahamsson and Juha Koskela. 2004. Extreme programming: A survey of empirical data from a controlled

case study. Proceedings - 2004 International Symposium on Empirical Software Engineering, ISESE 2004 (2004), 73–82.
https://doi.org/10.1109/ISESE.2004.1334895

[3] Mohammed Ibrahim Alhojailan. 2012. Thematic Analysis : A Critical Review of Its Process and Evaluation. WEI
International European AcademicConference Proceedings 1, 2011 (2012), 8–21.

[4] Len Bass, Paul Clements, and Rick Kazman. 2013. Software Architecture in Practice. Pearson.
[5] Kent Beck and Erich Gamma. 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley Professional.
[6] Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland. 1999. SCRUM: An extension pattern

language for hyperproductive software development. Pattern languages of program design 4 (1999), 637–651.
[7] Ilias Bergström and Alan F. Blackwell. 2016. The practices of programming. In Proceedings of IEEE Symposium on Visual

Languages and Human-Centric Computing, VL/HCC, Vol. 2016-Novem. 190–198. https://doi.org/10.1109/VLHCC.2016.
7739684

[8] Elizabeth Bjarnason, Michael Unterkalmsteiner, Markus Borg, and Emelie Engström. 2016. A multi-case study of agile
requirements engineering and the use of test cases as requirements. Information and Software Technology 77 (2016),
61–79.

[9] Barry Boehm. 2006. A View of 20th and 21st Century Software Engineering. In Proceedings of the 28th International
Conference on Software Engineering (Shanghai, China) (ICSE ’06). ACM, New York, NY, USA, 12–29. https://doi.org/10.
1145/1134285.1134288

[10] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. Qualitative Research in Psychology 3,
2 (jan 2006), 77–101. https://doi.org/10.1191/1478088706qp063oa arXiv:1011.1669

[11] Virginia Braun and Victoria Clarke. 2014. What can "thematic analysis" offer health and wellbeing researchers?
International Journal of Qualitative Studies on Health and Well-being 9 (2014), 20–22. https://doi.org/10.3402/qhw.v9.
26152

[12] Ricardo Britto, Darja Šmite, and Lars-Ola Damm. 2016. Software Architects in Large-Scale Distributed Projects: An
Ericsson Case Study. IEEE Software 33, 6 (nov 2016), 48–55. https://doi.org/10.1109/MS.2016.146

[13] Frederick P Brooks. 1995. The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Pearson
Education. https://books.google.se/books?id=Yq35BY5Fk3gC

[14] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. 1996. Pattern-Oriented Software
Architecture. A System of Patterns. Vol. Vol. 1. John Wiley & Sons, Chichester. 476 pages.

[15] Oisín Cawley, Xiaofeng Wang, and Ita Richardson. 2010. Lean/agile software development methodologies in regulated
environments - State of the art. In International Conference on Lean Enterprise Software and Systems, Vol. 65 LNBIP.
Springer Verlag, 31–36. https://doi.org/10.1007/978-3-642-16416-3_4

[16] Panagiota Chatzipetrou, Darja Šmite, and Rini van Solingen. 2018. When and Who Leaves Matters: Emerging Results
from an Empirical Study of Employee Turnover. In Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (Oulu, Finland) (ESEM ’18). Association for Computing Machinery,
New York, NY, USA, Article 53, 4 pages. https://doi.org/10.1145/3239235.3267431

[17] Paul C Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little, Paulo Meson, Robert Nord, Judith
Stafford, Paulo Merson, Robert Nord, and Judith Stafford. 2010. Documenting software architectures: views and beyond
(2nd editio ed.). Pearson Education. http://dl.acm.org/citation.cfm?id=599933

[18] Mike Cohn. 2010. Succeeding with agile: software development using Scrum. Pearson Education.
[19] CollabNet VersionOne. 2019. The 13th annual STATE OF AGILE Report - 2018. Technical Report. 16 pages. https:

//www.stateofagile.com/{#}ufh-i-521251909-13th-annual-state-of-agile-report
[20] James O. Coplien. 1994. Borland Software Craftsmanship: A New Look at Process, Quality and Productivity. In

Proceedings of the 5th Annual Borland International Conference (Orlando, FL, USA).

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1109/MS.2018.2886178
https://doi.org/10.1109/ISESE.2004.1334895
https://doi.org/10.1109/VLHCC.2016.7739684
https://doi.org/10.1109/VLHCC.2016.7739684
https://doi.org/10.1145/1134285.1134288
https://doi.org/10.1145/1134285.1134288
https://doi.org/10.1191/1478088706qp063oa
http://arxiv.org/abs/1011.1669
https://doi.org/10.3402/qhw.v9.26152
https://doi.org/10.3402/qhw.v9.26152
https://doi.org/10.1109/MS.2016.146
https://books.google.se/books?id=Yq35BY5Fk3gC
https://doi.org/10.1007/978-3-642-16416-3_4
https://doi.org/10.1145/3239235.3267431
http://dl.acm.org/citation.cfm?id=599933
https://www.stateofagile.com/{#}ufh-i-521251909-13th-annual-state-of-agile-report
https://www.stateofagile.com/{#}ufh-i-521251909-13th-annual-state-of-agile-report

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

48 Sundelin and Gonzalez-Huerta, et al.

[21] Lisa Crispin and Janet Gregory. 2008. Agile Testing: A Practical Guide for Testers and Agile Teams. Pearson Education.
[22] Ward Cunningham. 1992. The WyCash portfolio management system. ACM SIGPLAN OOPS Messenger 4, 2 (1992),

29–30.
[23] Bill Curtis, Herb Krasner, and Neil Iscoe. 1988. A Field Study of the Software Design Process for Large Systems.

Commun. ACM 31, 11 (Nov. 1988), 1268–1287. https://doi.org/10.1145/50087.50089
[24] Philipp Diebold and Marc Dahlem. 2014. Agile practices in practice - A mapping study. In 18th International Conference

on Evaluation and Assessment in Software Engineering. Association for Computing Machinery. https://doi.org/10.1145/
2601248.2601254

[25] Edsger W Dijkstra. 1982. On the role of scientific thought. In Selected writings on computing: a personal perspective.
Springer, 60–66.

[26] Tomaž Dogša and David Batič. 2011. The effectiveness of test-driven development: An industrial case study. Software
Quality Journal 19, 4 (2011), 643–661. https://doi.org/10.1007/s11219-011-9130-2

[27] Markus Feyh and Kai Petersen. 2013. Lean software development measures and indicators - A systematic mapping
study. In Lecture Notes in Business Information Processing, Vol. 167. Springer Verlag, 32–47. https://doi.org/10.1007/978-
3-642-44930-7_3

[28] Bent Flyvbjerg. 2006. Five Misunderstandings About Case-Study Research. Qualitative Inquiry 12, 2 (2006), 219–245.
https://doi.org/10.1177/1077800405284363

[29] Martin Fowler, Kent Beck, John Brant, and William Opdyke. 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional.

[30] Davide Fucci, Hakan Erdogmus, and Burak Turhan. 2015. A Dissection of Test-Driven Development: Does It Really
Matter to Test-First or to Test-Last? IEEE Transactions on Software Engineering 6, 1 (2015), 1–20. https://doi.org/10.
1109/TSE.2016.2616877 arXiv:1611.05994

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns: Elements of Reusable Object-Oriented Software.
Pearson Education. https://books.google.se/books?id=6oHuKQe3TjQC

[32] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2019. Guidelines for including grey literature and conducting
multivocal literature reviews in software engineering. Information and Software Technology 106, May 2018 (2019),
101–121. https://doi.org/10.1016/j.infsof.2018.09.006 arXiv:1707.02553

[33] T.F. Gilbert. 1978. Human Competence: Engineering Worthy Performance. McGraw-Hill. https://books.google.se/books?
id=goNbAAAAMAAJ

[34] Barney G. Glaser and Anselm L. Strauss. 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research.
Aldine Publishing Company.

[35] Corey Haines. 2014. Understanding the 4 Rules of Simple Design. Leanpub. 88 pages.
[36] Rashina Hoda, Norsaremah Salleh, John Grundy, and Hui Mien Tee. 2017. Systematic literature reviews in agile

software development: A tertiary study. Information and Software Technology 85 (2017), 60–70. https://doi.org/10.
1016/j.infsof.2017.01.007

[37] D Hoover and A Oshineye. 2009. Apprenticeship Patterns: Guidance for the Aspiring Software Craftsman. O’Reilly Media.
https://books.google.se/books?id=I3xFAoZT%5C_5AC

[38] Andy Hunt and Dave Thomas. 1999. The Pragmatic Programmer: From Journeyman to Master. Pearson Education.
[39] Martin Ivarsson and Tony Gorschek. 2011. A method for evaluating rigor and industrial relevance of technology

evaluations. Empirical Software Engineering 16, 3 (2011), 365–395.
[40] Ivar Jacobson and Ed Seidewitz. 2014. A New Software Engineering. Queue 12, 10, Article 30 (Oct. 2014), 9 pages.

https://doi.org/10.1145/2685690.2693160
[41] Samireh Jalali and Claes Wohlin. 2012. Global software engineering and agile practices: A systematic review. Journal

of software: Evolution and Process 24, 6 (2012), 643–659.
[42] Daniel Karlström and Per Runeson. 2005. Combining Agile Methods with Stage-Gate Project Management. IEEE

Software May/June (2005), 43–49.
[43] George L Kelling, James Q Wilson, et al. 1982. Broken windows. Atlantic monthly 249, 3 (1982), 29–38.
[44] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A field study of refactoring challenges and

benefits. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering -
FSE ’12. ACM Press, New York, New York, USA, 1. https://doi.org/10.1145/2393596.2393655

[45] Donald Ervin Knuth. 1984. Literate programming. Comput. J. 27, 2 (1984), 97–111.
[46] Eetu Kupiainen, Mika V. Mäntylä, and Juha Itkonen. 2015. Using metrics in Agile and Lean software development - A

systematic literature review of industrial studies. https://doi.org/10.1016/j.infsof.2015.02.005
[47] C Larman and B Vodde. 2008. Scaling Lean and Agile Development: Thinking and Organizational Tools for Large-Scale

Scrum. Pearson Education. https://books.google.se/books?id=HbRo4kYnTnMC
[48] Rikard Lindell. 2012. The Craft of Programming Interaction. In Proceedings of International Workshop on the Interplay

between User Experience Evaluation and Software Development (I-UxSED 2012). 26–30.

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1145/50087.50089
https://doi.org/10.1145/2601248.2601254
https://doi.org/10.1145/2601248.2601254
https://doi.org/10.1007/s11219-011-9130-2
https://doi.org/10.1007/978-3-642-44930-7_3
https://doi.org/10.1007/978-3-642-44930-7_3
https://doi.org/10.1177/1077800405284363
https://doi.org/10.1109/TSE.2016.2616877
https://doi.org/10.1109/TSE.2016.2616877
http://arxiv.org/abs/1611.05994
https://books.google.se/books?id=6oHuKQe3TjQC
https://doi.org/10.1016/j.infsof.2018.09.006
http://arxiv.org/abs/1707.02553
https://books.google.se/books?id=goNbAAAAMAAJ
https://books.google.se/books?id=goNbAAAAMAAJ
https://doi.org/10.1016/j.infsof.2017.01.007
https://doi.org/10.1016/j.infsof.2017.01.007
https://books.google.se/books?id=I3xFAoZT%5C_5AC
https://doi.org/10.1145/2685690.2693160
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1016/j.infsof.2015.02.005
https://books.google.se/books?id=HbRo4kYnTnMC

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Towards an Anatomy of Software Craftsmanship 49

[49] Rikard Lindell. 2014. Crafting Interaction: The Epistemology of Modern Programming. Personal Ubiquitous Comput.
18, 3 (March 2014), 613–624. https://doi.org/10.1007/s00779-013-0687-6

[50] Jessica Lingel and Tim Regan. 2014. "It’s in Your Spinal Cord, It’s in Your Fingertips": Practices of Tools and Craft in
Building Software. In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social
Computing (Baltimore, Maryland, USA) (CSCW ’14). ACM, New York, NY, USA, 295–304. https://doi.org/10.1145/
2531602.2531614

[51] Percival Lucena and Leonardo P. Tizzei. 2016. Applying Software Craftsmanship Practices to a Scrum Project: an
Experience Report. CoRR abs/1611.05789 (2016). arXiv:1611.05789 http://arxiv.org/abs/1611.05789

[52] Sandro Mancuso. 2014. The Software Craftsman: Professionalism, Pragmatism, Pride. Pearson Education. https:
//books.google.se/books?id=JxvVBQAAQBAJ

[53] G. Marcionetti, F. Cannizzo, and P. Moser. 2008. The Toolbox of a Successful Software Craftsman. In Engineering of
Computer-Based Systems, IEEE International Conference on the(ECBS), Vol. 00. 389–397. https://doi.org/10.1109/ECBS.
2008.48

[54] Robert C Martin. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. Pearson Education. https:
//books.google.se/books?id=_i6bDeoCQzsC

[55] Robert C Martin. 2011. The clean coder: a code of conduct for professional programmers. Pearson Education.
[56] Robert C Martin. 2017. Clean Architecture: A Craftsman’s Guide to Software Structure and Design. Pearson Education.
[57] Pete McBreen. 2002. Software Craftsmanship: The New Imperative. Addison-Wesley.
[58] Jim McCarthy. 1995. Dynamics of software development. Vol. 3. Microsoft Press Redmond, WA.
[59] Gerard Meszaros. 2007. xUnit test patterns: Refactoring test code. Pearson Education.
[60] Erica Mourão, João Felipe Pimentel, Leonardo Murta, Marcos Kalinowski, Emilia Mendes, and Claes Wohlin. 2020. On

the performance of hybrid search strategies for systematic literature reviews in software engineering. Information and
Software Technology 123 (2020), 106294.

[61] Hussan Munir, Misagh Moayyed, and Kai Petersen. 2014. Considering rigor and relevance when evaluating test driven
development: A systematic review. (2014). https://doi.org/10.1016/j.infsof.2014.01.002

[62] Maria Paasivaara and Casper Lassenius. 2014. Communities of practice in a large distributed agile software development
organization – Case Ericsson. Information and Software Technology 56, 12 (2014), 1556 – 1577. https://doi.org/10.1016/
j.infsof.2014.06.008 Special issue: Human Factors in Software Development.

[63] D. Parsons, A. Mathrani, T. Susnjak, and A. Leist. 2014. Coderetreats: Reflective Practice and the Game of Life. IEEE
Software 31, 4 (July 2014), 58–64. https://doi.org/10.1109/MS.2014.25

[64] David Parsons, Teo Susnjak, and Anuradha Mathrani. 2016. Design from detail: Analyzing data from a global day of
coderetreat. Information and Software Technology 75 (2016), 39 – 55. https://doi.org/10.1016/j.infsof.2016.03.005

[65] Kai Petersen. 2012. A palette of lean indicators to detect waste in software maintenance: A case study. In Lecture Notes in
Business Information Processing, Vol. 111 LNBIP. Springer Verlag, 108–122. https://doi.org/10.1007/978-3-642-30350-0_8

[66] Kai Petersen and Claes Wohlin. 2011. Measuring the flow in lean software development. Software - Practice and
Experience 41, 9 (2011), 975–996. https://doi.org/10.1002/spe.975

[67] Mary Poppendieck and Tom Poppendieck. 2003. Lean Software Development: An Agile Toolkit. Addison-Wesley.
[68] Bill Pyritz. 2003. Craftsmanship versus engineering: Computer programming - An art or a

science? Bell Labs Technical Journal 8, 3 (2003), 101–104. https://doi.org/10.1002/bltj.10079
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/bltj.10079

[69] Paul Ralph and Ewan Tempero. 2018. Construct Validity in Software Engineering Research and Software Metrics. In
Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering 2018 (Christchurch,
New Zealand) (EASE’18). Association for Computing Machinery, New York, NY, USA, 13–23. https://doi.org/10.1145/
3210459.3210461

[70] Mark Richards. 2015. Software Architecture Patterns. O’Reilly Media, Inc.
[71] Pilar Rodríguez, Kirsi Mikkonen, Pasi Kuvaja, Markku Oivo, and Juan Garbajosa. 2013. Building Lean Thinking in

a Telecom Software Development Organization: Strengths and Challenges. In Proceedings of the 2013 International
Conference on Software and System Process (San Francisco, CA, USA) (ICSSP 2013). ACM, New York, NY, USA, 98–107.
https://doi.org/10.1145/2486046.2486064

[72] Winston W. Royce. 1970. Managing the development of large software systems. In Proceedings, IEEE WESCON. 1–9.
https://doi.org/10.1016/0378-4754(91)90107-E

[73] Per Runeson, Martin Höst, Austen Rainer, and Bjorn Regnell. 2012. Case study research in software engineering:
Guidelines and examples. John Wiley & Sons.

[74] Dina Salah, Richard F. Paige, and Paul Cairns. 2014. A systematic literature review for Agile development processes and
user centred design integration. In 18th International Conference on Evaluation and Assessment in Software Engineering.
Association for Computing Machinery, London, UK. https://doi.org/10.1145/2601248.2601276

[75] Johnny Saldana. 2015. Coding Manual for Qualitative Researchers (3rd ed.). Sage Publications. 223 pages.

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1007/s00779-013-0687-6
https://doi.org/10.1145/2531602.2531614
https://doi.org/10.1145/2531602.2531614
http://arxiv.org/abs/1611.05789
http://arxiv.org/abs/1611.05789
https://books.google.se/books?id=JxvVBQAAQBAJ
https://books.google.se/books?id=JxvVBQAAQBAJ
https://doi.org/10.1109/ECBS.2008.48
https://doi.org/10.1109/ECBS.2008.48
https://books.google.se/books?id=_i6bDeoCQzsC
https://books.google.se/books?id=_i6bDeoCQzsC
https://doi.org/10.1016/j.infsof.2014.01.002
https://doi.org/10.1016/j.infsof.2014.06.008
https://doi.org/10.1016/j.infsof.2014.06.008
https://doi.org/10.1109/MS.2014.25
https://doi.org/10.1016/j.infsof.2016.03.005
https://doi.org/10.1007/978-3-642-30350-0_8
https://doi.org/10.1002/spe.975
https://doi.org/10.1002/bltj.10079
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/bltj.10079
https://doi.org/10.1145/3210459.3210461
https://doi.org/10.1145/3210459.3210461
https://doi.org/10.1145/2486046.2486064
https://doi.org/10.1016/0378-4754(91)90107-E
https://doi.org/10.1145/2601248.2601276

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

50 Sundelin and Gonzalez-Huerta, et al.

[76] T. Sedano. 2012. Towards Teaching Software Craftsmanship. In 2012 IEEE 25th Conference on Software Engineering
Education and Training. 95–99. https://doi.org/10.1109/CSEET.2012.29

[77] P Seibel. 2009. Coders at Work: Reflections on the Craft of Programming. Apress. https://books.google.se/books?id=
2kMIqdfyT8kC

[78] R Sennett. 2008. The Craftsman. Yale University Press. https://books.google.se/books?id=SRAV0KvuOQwC
[79] Ana Silva, Thalles Araújo, João Nunes, Mirko Perkusich, Ednaldo Dilorenzo, Hyggo Almeida, and Angelo Perkusich.

2017. A Systematic Review on the Use of Definition of Done on Agile Software Development Projects. In Proceedings of
the 21st International Conference on Evaluation and Assessment in Software Engineering (Karlskrona, Sweden) (EASE’17).
Association for Computing Machinery, New York, NY, USA, 364–373. https://doi.org/10.1145/3084226.3084262

[80] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded Theory in Software Engineering Research: A Critical
Review and Guidelines. (2016). https://doi.org/10.1145/2884781.2884833

[81] Paul Taylor. 2003. Vernacularism in Software Design Practice: does craftsmanship have a place in software engineering?
Australasian Journal of Information Systems 11, 1 (2003). https://doi.org/10.3127/ajis.v11i1.143

[82] Dave Thomas. 2010. Professional Developers Practice their Kata to Stay Sharp. Journal of Object Technology 9 (03
2010), 23–25. https://doi.org/10.5381/jot.2010.9.2.c3

[83] Ayse Tosun, Oscar Dieste, Davide Fucci, Sira Vegas, Burak Turhan, Hakan Erdogmus, Adrian Santos, Markku Oivo,
Kimmo Toro, Janne Jarvinen, and Natalia Juristo. 2017. An industry experiment on the effects of test-driven development
on external quality and productivity. Empirical Software Engineering 22, 6 (dec 2017), 2763–2805. https://doi.org/10.
1007/s10664-016-9490-0

[84] Raoul Vallon, Bernardo José da Silva Estácio, Rafael Prikladnicki, and Thomas Grechenig. 2018. Systematic literature
review on agile practices in global software development. Information and Software Technology 96, April 2017 (2018),
161–180. https://doi.org/10.1016/j.infsof.2017.12.004

[85] Darja Šmite, Nils Brede Moe, Marcin Floryan, Georgiana Levinta, and Panagiota Chatzipetrou. 2020. Spotify Guilds.
Commun. ACM 63, 3 (Feb. 2020), 56–61. https://doi.org/10.1145/3343146

[86] Etienne Wenger. 1999. Communities of practice: Learning, meaning, and identity. Cambridge university press.
[87] Ron Westrum. 2004. A typology of organisational cultures. BMJ Quality & Safety 13, suppl 2 (2004), ii22–ii27.
[88] R Winter. 2015. Agile Performance Improvement: The New Synergy of Agile and Human Performance Technology. Apress.

https://books.google.se/books?id=t2QnCgAAQBAJ
[89] Niklaus Wirth. 2008. A Brief History of Software Engineering. IEEE Annals of the History of Computing 30, 3 (2008),

32–39. https://doi.org/10.1109/MAHC.2008.33
[90] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software

Engineering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering
(London, England, United Kingdom) (EASE ’14). ACM, New York, NY, USA, Article 38, 10 pages. https://doi.org/10.
1145/2601248.2601268

[91] R.K. Yin. 2009. Case Study Research: Design and Methods. SAGE Publications.
[92] Ehsan Zabardast, Javier Gonzalez-Huerta, and Darja Šmite. 2020. Refactoring , Bug Fixing , and New Development

Effect on Technical Debt : An Industrial Case Study. In 46th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 376–384. https://doi.org/10.1109/SEAA51224.2020.00068

, Vol. 1, No. 1, Article . Publication date: June 2020.

https://doi.org/10.1109/CSEET.2012.29
https://books.google.se/books?id=2kMIqdfyT8kC
https://books.google.se/books?id=2kMIqdfyT8kC
https://books.google.se/books?id=SRAV0KvuOQwC
https://doi.org/10.1145/3084226.3084262
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.3127/ajis.v11i1.143
https://doi.org/10.5381/jot.2010.9.2.c3
https://doi.org/10.1007/s10664-016-9490-0
https://doi.org/10.1007/s10664-016-9490-0
https://doi.org/10.1016/j.infsof.2017.12.004
https://doi.org/10.1145/3343146
https://books.google.se/books?id=t2QnCgAAQBAJ
https://doi.org/10.1109/MAHC.2008.33
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/SEAA51224.2020.00068

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	3.1 Systematic Literature Review Methodology and Execution
	3.2 Case Study Methodology
	3.3 Consolidated Data Analysis: Building the Anatomy

	4 Systematic Literature Review Results (RQ1)
	5 The Anatomy of Software Craftsmanship (RQ2 and RQ3)
	5.1 A Value-focused architecture
	5.2 D Iterative design, development, and verification
	5.3 C Shared professional culture
	5.4 F Feedback

	6 Discussion and Implications
	6.1 The principles and practices of software craftsmanship — in literature and in our case study (RQ1 and RQ2)
	6.2 What are the consequences of applying the software craftsmanship principles and practices in real life? (RQ3)
	6.3 Software Craftsmanship vs. Agile Software Development
	6.4 Software Craftsmanship vs. Lean Software Development
	6.5 Returning to the Software Craftsmanship Manifesto

	7 Validity
	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Acknowledgments
	References

